关键词: CA-Markov model Shanxi section of the Yellow River Basin climatic factor ecologi-cal environment quality remote sensing ecological index

Mesh : China Rivers Ecosystem Environmental Monitoring / methods Remote Sensing Technology Conservation of Natural Resources Satellite Imagery Ecology

来  源:   DOI:10.13287/j.1001-9332.202405.027

Abstract:
Shanxi Province holds an important strategic position in the overall ecological pattern of the Yellow River Basin. To investigate the changes of the ecological environment in the Shanxi section of the Yellow River Basin from 2000 to 2020, we selected MODIS remote sensing image data to determine the remote sensing ecological index (RSEI) based on the principal component analysis of greenness, humidity, dryness, and heat. Then, we analyzed the spatial and temporal variations of ecological quality in this region to explore the influencing factors. We further used the CA-Markov model to simulate and predict the ecological environment under different development scenarios in the Shanxi section of the Yellow River Basin in 2030. The results showed that RSEI had good applicability in the Shanxi section of the Yellow River Basin which could be used to monitor and evaluate the spatiotemporal variations in its ecological environment. From 2000 to 2020, the Shanxi section of the Yellow River Basin was dominated by low quality habitat areas, in which the ecological environment quality continued to improve from 2000 to 2010 and decreased from 2010 to 2020. The high quality habitat areas mainly located on the mountainous areas with superior natural conditions and rich biodiversity, while the low ecological quality areas were mainly in the Taiyuan Basin and the northern part of the study area, where the mining industry developed well. Climate factors were negatively correlated with ecological environment quality in the northern and central parts of the study area, and positively correlated with that in the mountainous area. Under all three development scenarios, the area of cultivated land, forest, water and construction land increased in 2030 compared to that in 2020. Compared to the natural development scenario and the cultivated land protection scenario, the ecological constraint scenario with RSEI as the limiting factor had the highest area of new forest and the lowest expansion rate of cultivated land and construction land. The results would provide a reference for land space planning and ecological environment protection in the Shanxi section of the Yellow River Basin.
山西省在黄河流域总体生态格局中具有重要的战略地位。为深入研究2000—2020年黄河流域山西段生态环境的变化,选用MODIS遥感影像数据,基于绿度、湿度、干度和热度的主成分分析确定遥感生态指数(RSEI),对该区域生态环境质量的时空变化进行分析并探讨影响因素;同时,利用CA-Markov模型对2030年黄河流域山西段不同发展情景下生态环境进行模拟和预测。结果表明: RSEI在黄河流域山西段具有较好的适用性,可用于监测和评估其生态环境的时空变化特征。2000—2020年,黄河流域山西段以低生境质量区为主,其中,2000—2010年生态环境质量持续改善,而2010—2020年则有所退化;高生境质量区集中于山区,其自然条件优越、生物多样性丰富,低生态质量区主要分布在城市群集中的太原盆地及研究区北部采矿业发达的地区;在研究区的北部和中部,气候因子与生态环境质量呈负相关关系,而在高山区域二者呈正相关关系。3种发展情景下,2030年研究区的耕地、林地、水体和建设用地面积均较2020年有所增加;相较于自然发展情景和耕地保护情景,在以RSEI为限制因子的生态约束情景中,新增林地面积最多,而耕地和建设用地的扩张速率最低。研究结果可为黄河流域山西段的国土空间规划及生态环境保护提供参考。.
摘要:
暂无翻译
公众号