关键词: EndoC-βH1 EndoC-βH5 INS-1 cells extracellular electrophysiology insulin islets microelectrode array spheroids

Mesh : Humans Insulin-Secreting Cells / physiology metabolism cytology Spheroids, Cellular Electrophysiological Phenomena Insulin Secretion / physiology Glucose / metabolism pharmacology Insulin / metabolism Action Potentials / physiology Animals

来  源:   DOI:10.3389/fendo.2024.1402880   PDF(Pubmed)

Abstract:
UNASSIGNED: Pancreatic islets are important in nutrient homeostasis and improved cellular models of clonal origin may very useful especially in view of relatively scarce primary material. Close 3D contact and coupling between β-cells are a hallmark of physiological function improving signal/noise ratios. Extracellular electrophysiology using micro-electrode arrays (MEA) is technically far more accessible than single cell patch clamp, enables dynamic monitoring of electrical activity in 3D organoids and recorded multicellular slow potentials (SP) provide unbiased insight in cell-cell coupling.
UNASSIGNED: We have therefore asked whether 3D spheroids enhance clonal β-cell function such as electrical activity and hormone secretion using human EndoC-βH1, EndoC-βH5 and rodent INS-1 832/13 cells.
UNASSIGNED: Spheroids were formed either by hanging drop or proprietary devices. Extracellular electrophysiology was conducted using multi-electrode arrays with appropriate signal extraction and hormone secretion measured by ELISA.
UNASSIGNED: EndoC-βH1 spheroids exhibited increased signals in terms of SP frequency and especially amplitude as compared to monolayers and even single cell action potentials (AP) were quantifiable. Enhanced electrical signature in spheroids was accompanied by an increase in the glucose stimulated insulin secretion index. EndoC-βH5 monolayers and spheroids gave electrophysiological profiles similar to EndoC-βH1, except for a higher electrical activity at 3 mM glucose, and exhibited moreover a biphasic profile. Again, physiological concentrations of GLP-1 increased AP frequency. Spheroids also exhibited a higher secretion index. INS-1 cells did not form stable spheroids, but overexpression of connexin 36, required for cell-cell coupling, increased glucose responsiveness, dampened basal activity and consequently augmented the stimulation index.
UNASSIGNED: In conclusion, spheroid formation enhances physiological function of the human clonal β-cell lines and these models may provide surrogates for primary islets in extracellular electrophysiology.
摘要:
胰岛在营养稳态中很重要,改进的克隆起源细胞模型可能非常有用,尤其是考虑到相对稀缺的主要物质。β细胞之间的紧密3D接触和耦合是改善信号/噪声比的生理功能的标志。使用微电极阵列(MEA)的细胞外电生理学在技术上比单细胞膜片钳更容易获得,能够动态监测3D类器官中的电活动,并记录多细胞慢电位(SP),从而在细胞-细胞耦合中提供无偏见的见解。
因此,我们询问3D球体是否使用人EndoC-βH1,EndoC-βH5和啮齿动物INS-1832/13细胞增强克隆β细胞功能,例如电活性和激素分泌。
球体是通过悬挂式或专有设备形成的。使用多电极阵列进行细胞外电生理学,并通过ELISA测量适当的信号提取和激素分泌。
与单层相比,EndoC-βH1球体在SP频率和尤其是振幅方面表现出增加的信号,甚至单细胞动作电位(AP)也是可量化的。球状体中增强的电特征伴随着葡萄糖刺激的胰岛素分泌指数的增加。EndoC-βH5单层和球体的电生理特性与EndoC-βH1相似,但在3mM葡萄糖下具有更高的电活性,此外,还表现出双相的轮廓。再一次,GLP-1的生理浓度增加AP频率。球体也表现出更高的分泌指数。INS-1细胞没有形成稳定的球体,但是细胞-细胞偶联所需的连接蛋白36的过表达,葡萄糖反应性增加,抑制了基础活动,因此增加了刺激指数。
总而言之,球体的形成增强了人克隆β细胞系的生理功能,这些模型可能为细胞外电生理学中的原代胰岛提供替代。
公众号