关键词: avian disease fiber protein fowl adenovirus hexon in silico multi-epitopic vaccine penton base

Mesh : Animals Chickens Vaccines, Subunit / immunology Poultry Diseases / prevention & control virology Epitopes, T-Lymphocyte / immunology Epitopes, B-Lymphocyte / immunology Adenoviridae Infections / prevention & control veterinary immunology Molecular Docking Simulation Viral Vaccines / immunology Viral Structural Proteins / immunology genetics Aviadenovirus / immunology genetics Computer Simulation Protein Subunit Vaccines

来  源:   DOI:10.3389/fcimb.2024.1351303   PDF(Pubmed)

Abstract:
UNASSIGNED: Fowl adenovirus (FAdV) is a significant pathogen in poultry, causing various diseases such as hepatitis-hydropericardium, inclusion body hepatitis, and gizzard erosion. Different serotypes of FAdV are associated with specific conditions, highlighting the need for targeted prevention strategies. Given the rising prevalence of FAdV-related diseases globally, effective vaccination and biosecurity measures are crucial. In this study, we explore the potential of structural proteins to design a multi-epitope vaccine targeting FAdV.
UNASSIGNED: We employed an in silico approach to design the multi-epitope vaccine. Essential viral structural proteins, including hexon, penton, and fiber protein, were selected as vaccine targets. T-cell and B-cell epitopes binding to MHC-I and MHC-II molecules were predicted using computational methods. Molecular docking studies were conducted to validate the interaction of the multi-epitope vaccine candidate with chicken Toll-like receptors 2 and 5.
UNASSIGNED: Our in silico methodology successfully identified potential T-cell and B-cell epitopes within the selected viral structural proteins. Molecular docking studies revealed strong interactions between the multi-epitope vaccine candidate and chicken Toll-like receptors 2 and 5, indicating the structural integrity and immunogenic potential of the designed vaccine.
UNASSIGNED: The designed multi-epitope vaccine presents a promising approach for combating FAdV infections in chickens. By targeting essential viral structural proteins, the vaccine is expected to induce a robust immunological response. The in silico methodology utilized in this study provides a rapid and cost-effective means of vaccine design, offering insights into potential vaccine candidates before experimental validation. Future studies should focus on in vitro and in vivo evaluations to further assess the efficacy and safety of the proposed vaccine.
摘要:
禽腺病毒(FAdV)是家禽中的重要病原体,引起各种疾病,如肝炎-心包水,包涵体肝炎,和蜥蜴侵蚀。FAdV的不同血清型与特定条件有关,强调有针对性的预防战略的必要性。鉴于全球范围内FAdV相关疾病的患病率上升,有效的疫苗接种和生物安全措施至关重要。在这项研究中,我们探索了结构蛋白设计靶向FAdV的多表位疫苗的潜力。
我们采用计算机模拟方法来设计多表位疫苗。必需的病毒结构蛋白,包括hexon,penton,和纤维蛋白质,被选为疫苗靶标。使用计算方法预测与MHC-I和MHC-II分子结合的T细胞和B细胞表位。进行分子对接研究以验证多表位疫苗候选物与鸡Toll样受体2和5的相互作用。
我们的计算机方法成功地鉴定了所选病毒结构蛋白中潜在的T细胞和B细胞表位。分子对接研究揭示多表位候选疫苗与鸡Toll样受体2和5之间的强相互作用,表明所设计疫苗的结构完整性和免疫原性潜力。
设计的多表位疫苗为对抗鸡中的FAdV感染提供了有希望的方法。通过靶向必需的病毒结构蛋白,该疫苗有望诱导强大的免疫反应。本研究中使用的计算机方法提供了一种快速且具有成本效益的疫苗设计方法,在实验验证之前提供对潜在候选疫苗的见解。未来的研究应集中在体外和体内评估,以进一步评估拟议疫苗的功效和安全性。
公众号