关键词: brain morphology comparative anatomy modularity network theory spatial constraints

来  源:   DOI:10.1002/ajpa.24988

Abstract:
Spatial interactions among anatomical elements help to identify topological factors behind morphological variation and can be investigated through network analysis. Here, a whole-brain network model of the chimpanzee (Pan troglodytes, Blumenbach 1776) is presented, based on macroanatomical divisions, and compared with a previous equivalent model of the human brain. The goal was to contrast which regions are essential in the geometric balance of the brains of the two species, to compare underlying phenotypic patterns of spatial variation, and to understand how these patterns might have influenced the evolution of human brain morphology. The human and chimpanzee brains share morphologically complex inferior-medial regions and a topological organization that matches the spatial constraints exerted by the surrounding braincase. These shared topological features are interesting because they can be traced back to the Chimpanzee-Human Last Common Ancestor, 7-10 million years ago. Nevertheless, some key differences are found in the human and chimpanzee brains. In humans, the temporal lobe, particularly its deep and medial limbic aspect (the parahippocampal gyrus), is a crucial node for topological complexity. Meanwhile, in chimpanzees, the cerebellum is, in this sense, more embedded in an intricate spatial position. This information helps to interpret brain macroanatomical change in fossil hominids.
摘要:
解剖元素之间的空间相互作用有助于识别形态变异背后的拓扑因素,可以通过网络分析进行研究。这里,黑猩猩的全脑网络模型(Panroglodytes,布卢门巴赫1776)提出,基于宏观解剖学划分,并与以前的人脑等效模型进行了比较。目的是对比这两个物种大脑的几何平衡中哪些区域是必不可少的,为了比较空间变异的潜在表型模式,并了解这些模式如何影响人类大脑形态的进化。人类和黑猩猩的大脑共享形态复杂的下内侧区域,并且拓扑结构与周围脑箱施加的空间约束相匹配。这些共享的拓扑特征很有趣,因为它们可以追溯到黑猩猩-人类最后的共同祖先,7-10百万年前。然而,在人类和黑猩猩的大脑中发现了一些关键的差异。在人类中,颞叶,特别是其深层和内侧边缘方面(海马旁回),是拓扑复杂性的关键节点。同时,在黑猩猩身上,小脑是,在这个意义上,更多的嵌入在一个复杂的空间位置。这些信息有助于解释化石原始人的大脑宏观解剖学变化。
公众号