关键词: Catalysis Catalyst Conversion Mineralization Plasma Reactor Synergy VOC

来  源:   DOI:10.1016/j.envres.2024.119333

Abstract:
This review is aimed at researchers in air pollution control seeking to understand the latest advancements in volatile organic compound (VOC) removal. Implementing of plasma-catalysis technology for the removal of volatile organic compounds (VOCs) led to a significant boost in terms of degradation yield and mineralization rate with low by-product formation. The plasma-catalysis combination can be used in two distinct ways: (I) the catalyst is positioned downstream of the plasma discharge, known as the \"post plasma catalysis configuration\" (PPC), and (II) the catalyst is located in the plasma zone and exposed directly to the discharge, called \"in plasma catalysis configuration\" (IPC). Coupling these two technologies, especially for VOCs elimination has attracted the interest of many researchers in recent years. The term \"synergy\" is widely reported in their works and associated with the positive effect of the plasma catalysis combination. This review paper investigates the state of the art of newly published papers about catalysis, photocatalysis, non-thermal plasma, and their combination for VOC removal application. The focus is on understanding different synergy sources operating mutually between plasma and catalysis discussed and classified into two main parts: the effect of the plasma discharge on the catalyst and the effect of the catalyst on plasma discharge. This approach has the potential for application in air purification systems for industrial processes or indoor environments.
摘要:
这篇综述针对空气污染控制领域的研究人员,旨在了解挥发性有机化合物(VOC)去除的最新进展。实施等离子体催化技术以去除挥发性有机化合物(VOC)导致降解产率和矿化速率显着提高,副产物形成少。等离子体-催化组合可以以两种不同的方式使用:(I)催化剂位于等离子体放电的下游,被称为“后等离子体催化配置”(PPC),和(II)催化剂位于等离子体区并直接暴露于放电,称为“在等离子体催化配置中”(IPC)。将这两种技术结合起来,尤其是对VOCs的消除近年来引起了许多研究者的兴趣。术语“协同作用”在他们的作品中被广泛报道,并与等离子体催化组合的积极作用有关。这篇综述论文研究了新发表的关于催化的论文的最新水平,光催化,非热等离子体,以及它们的组合用于VOC去除应用。重点是了解在等离子体和催化之间相互作用的不同协同源,并将其分为两个主要部分:等离子体放电对催化剂的影响和催化剂对等离子体放电的影响。这种方法具有应用于工业过程或室内环境的空气净化系统的潜力。
公众号