关键词: Anticancer drugs Biochemistry Bivalves Climate change Oxidative stress

Mesh : Animals Cisplatin / toxicity Mytilus / physiology drug effects Ifosfamide / toxicity Water Pollutants, Chemical / toxicity Antineoplastic Agents / toxicity Temperature

来  源:   DOI:10.1016/j.scitotenv.2024.173668

Abstract:
This study investigates the chronic impact of two of the most widely consumed antineoplastic drugs, Ifosfamide (IF) and Cisplatin (CDDP), on the bivalve species Mytilus galloprovincialis under current (17 °C) and predicted warming conditions (21 °C). Accompanying the expected increase in worldwide cancer incidence, antineoplastics detection in the aquatic environment is also expected to rise. Mussels were exposed to varying concentrations of IF (10, 100, 500 ng/L) and CDDP (10, 100, 1000 ng/L) for 28 days. Biochemical analyses focused on metabolic, antioxidant and biotransformation capacities, cellular damage, and neurotoxicity. Results showed temperature-dependent variations in biochemical responses. Metabolic capacity remained stable in mussels exposed to IF, while CDDP exposure increased it at 1000 ng/L for both temperatures. Antioxidant enzyme activities were unaffected by IF, but CDDP activated them, particularly at 21 °C. Biotransformation capacity was unchanged by IF but enhanced by CDDP. Nevertheless, cellular damage occurred at CDDP concentrations above 100 ng/L, regardless of temperature. Integrated biomarker responses highlighted CDDP\'s greater impact, emphasizing the critical role of temperature in shaping organismal responses and underscoring the complexity of environmental stressor interactions.
摘要:
这项研究调查了两种最广泛食用的抗肿瘤药物的慢性影响,异环磷酰胺(IF)和顺铂(CDDP),在当前(17°C)和预测的变暖条件(21°C)下的双壳类动物Mytilusgalloprovincialis。伴随着全球癌症发病率的预期增长,预计水生环境中的抗肿瘤物质检测也将上升。将贻贝暴露于不同浓度的IF(10、100、500ng/L)和CDDP(10、100、1000ng/L)28天。生化分析侧重于代谢能力,抗氧化和生物转化能力,细胞损伤,和神经毒性。结果显示生化反应的温度依赖性变化。代谢能力在IF下保持稳定,而CDDP暴露在两个温度下都增加了1000ng/L。抗氧化酶活性不受IF的影响,但是CDDP激活了它们,特别是在21°CIF的生物转化能力不变,但CDDP增强了生物转化能力。然而,CDDP浓度高于100ng/L时发生细胞损伤,不管温度。综合生物标志物反应突出了CDDP的更大影响,强调温度在塑造生物体反应中的关键作用,并强调环境压力源相互作用的复杂性。
公众号