关键词: bacterial adhesion biofilm formation extracellular polymeric substances nanoscale plasmonic imaging stepwise

Mesh : Bacterial Adhesion Biofilms Nanotechnology Surface Properties Escherichia coli / physiology

来  源:   DOI:10.1021/acsnano.4c04354

Abstract:
Understanding bacterial adhesion at the nanoscale is crucial for elucidating biofilm formation, enhancing biosensor performance, and designing advanced biomaterials. However, the dynamics of the critical transition from reversible to irreversible adhesion has remained elusive due to analytical constraints. Here, we probed this adhesion transition, unveiling nanoscale, step-like bacterial approaches to substrates using a plasmonic imaging technique. This method reveals the discontinuous nature of adhesion, emphasizing the complex interplay between bacterial extracellular polymeric substances (EPS) and substrates. Our findings not only deepen our understanding of bacterial adhesion but also have significant implications for the development of theoretical models for biofilm management. By elucidating these nanoscale step-like adhesion processes, our work provides avenues for the application of nanotechnology in biosensing, biofilm control, and the creation of biomimetic materials.
摘要:
了解纳米尺度的细菌粘附对于阐明生物膜的形成至关重要,增强生物传感器性能,设计先进的生物材料。然而,由于分析限制,从可逆粘附到不可逆粘附的关键过渡的动力学仍然难以捉摸。这里,我们探测了这个粘附转变,推出纳米级,使用等离子体成像技术的基底的阶梯状细菌方法。这种方法揭示了附着力的不连续性质,强调细菌胞外聚合物(EPS)和底物之间复杂的相互作用。我们的发现不仅加深了我们对细菌粘附的理解,而且对生物膜管理理论模型的发展也具有重要意义。通过阐明这些纳米级台阶状粘附过程,我们的工作为纳米技术在生物传感中的应用提供了途径,生物膜控制,和仿生材料的创造。
公众号