关键词: Oxidation mechanisms Peroxymonocarbonate Sodium percarbonate Toxicity Wastewater remediation

Mesh : Oxidation-Reduction Carbonates / chemistry Wastewater / chemistry Water Pollutants, Chemical / chemistry Water Purification / methods Hydrogen Peroxide / chemistry Reactive Oxygen Species

来  源:   DOI:10.1016/j.watres.2024.121842

Abstract:
Percarbonate encompasses sodium percarbonate (SPC) and composite in-situ generated peroxymonocarbonate (PMC). SPC emerges as a promising alternative to hydrogen peroxide (H2O2), hailed for its superior transportation safety, stability, cost-effectiveness, and eco-friendliness, thereby becoming a staple in advanced oxidation processes for mitigating water pollution. Yet, scholarly literature scarcely explores the deployment of percarbonate-AOPs in eradicating organic contaminants from aquatic systems. Consequently, this review endeavors to demystify the formation mechanisms and challenges associated with reactive oxygen species (ROS) in percarbonate-AOPs, alongside highlighting directions for future inquiry and development. The genesis of ROS encompasses the in situ chemical oxidation of activated SPC (including iron-based activation, discharge plasma, ozone activation, photon activation, and metal-free materials activation) and composite in situ chemical oxidation via PMC (namely, H2O2/NaHCO3/Na2CO3, peroxymonosulfate/NaHCO3/Na2CO3 systems). Moreover, the ROS generated by percarbonate-AOPs, such as •OH, O2•-, CO3•-, HO2•-, 1O2, and HCO4-, can work individually or synergistically to disintegrate target pollutants. Concurrently, this review systematically addresses conceivable obstacles posing percarbonate-AOPs in real-world application from the angle of environmental conditions (pH, temperature, coexisting substances), and potential ecological toxicity. Considering the outlined challenges and advantages, we posit future research directions to amplify the applicability and efficacy of percarbonate-AOPs in tangible settings. It is anticipated that the insights provided in this review will catalyze the progression of percarbonate-AOPs in water purification endeavors and bridge the existing knowledge void.
摘要:
过碳酸盐包括过碳酸钠(SPC)和原位生成的复合过氧单碳酸盐(PMC)。SPC成为过氧化氢(H2O2)的有希望的替代品,因其优越的运输安全性而受到赞誉,稳定性,成本效益,和生态友好,从而成为减轻水污染的高级氧化过程中的主食。然而,学术文献几乎没有探讨过碳酸盐-AOPs在消除水生系统中的有机污染物中的部署。因此,这篇综述试图揭开与过碳酸盐-AOPs中活性氧(ROS)相关的形成机制和挑战,同时突出了未来调查和发展的方向。ROS的发生包括活化SPC的原位化学氧化(包括铁基活化,放电等离子体,臭氧活化,光子激活,和无金属材料活化)和通过PMC的复合原位化学氧化(即H2O2/NaHCO3/Na2CO3,过氧单硫酸盐/NaHCO3/Na2CO3系统)。此外,过碳酸盐-AOPs产生的ROS,如•OH,O2•-,CO3•-,HO2•-,1O2和HCO3-,可以单独或协同地分解目标污染物。同时,这篇综述从环境条件(pH,温度,共存物质),和潜在的生态毒性。考虑到概述的挑战和优势,我们提出了未来的研究方向,以扩大过碳酸盐-AOPs在有形环境中的适用性和有效性。预计本综述提供的见解将催化过碳酸盐-AOPs在水净化工作中的进展,并弥合现有的知识空白。
公众号