关键词: astrocyte auditory cortex auditory development cochlea connexin 26 supporting cells

Mesh : Animals Cochlea / physiology Humans Hearing / physiology Auditory Pathways / physiology Auditory Perception / physiology Hair Cells, Auditory / physiology

来  源:   DOI:10.1016/j.tins.2024.04.007   PDF(Pubmed)

Abstract:
Sensory systems experience a period of intrinsically generated neural activity before maturation is complete and sensory transduction occurs. Here we review evidence describing the mechanisms and functions of this \'spontaneous\' activity in the auditory system. Both ex vivo and in vivo studies indicate that this correlated activity is initiated by non-sensory supporting cells within the developing cochlea, which induce depolarization and burst firing of groups of nearby hair cells in the sensory epithelium, activity that is conveyed to auditory neurons that will later process similar sound features. This stereotyped neural burst firing promotes cellular maturation, synaptic refinement, acoustic sensitivity, and establishment of sound-responsive domains in the brain. While sensitive to perturbation, the developing auditory system exhibits remarkable homeostatic mechanisms to preserve periodic burst firing in deaf mice. Preservation of this early spontaneous activity in the context of deafness may enhance the efficacy of later interventions to restore hearing.
摘要:
在成熟完成和感觉转导发生之前,感觉系统经历了一段时间内在产生的神经活动。在这里,我们回顾了描述听觉系统中这种“自发”活动的机制和功能的证据。离体和体内研究都表明,这种相关活性是由发育中的耳蜗内的非感觉支持细胞启动的。诱导感觉上皮中邻近毛细胞群的去极化和爆发放电,传递给听觉神经元的活动,这些神经元稍后将处理类似的声音特征。这种刻板的神经爆发促进细胞成熟,突触细化,声学灵敏度,并在大脑中建立声音响应域。虽然对扰动敏感,发育中的听觉系统表现出显着的稳态机制,以保持聋小鼠的周期性爆发。在耳聋的情况下保留这种早期自发活动可能会增强后期干预措施以恢复听力的功效。
公众号