关键词: Biomolecular protection DNA storage Liquid metal capsule Nucleic acid testing

Mesh : Phase Transition Biosensing Techniques / methods SARS-CoV-2 / isolation & purification COVID-19 / virology Gallium / chemistry Humans DNA / chemistry CRISPR-Cas Systems Capsules / chemistry

来  源:   DOI:10.1016/j.bios.2024.116403

Abstract:
Robust encapsulation and controllable release of biomolecules have wide biomedical applications ranging from biosensing, drug delivery to information storage. However, conventional biomolecule encapsulation strategies have limitations in complicated operations, optical instability, and difficulty in decapsulation. Here, we report a simple, robust, and solvent-free biomolecule encapsulation strategy based on gallium liquid metal featuring low-temperature phase transition, self-healing, high hermetic sealing, and intrinsic resistance to optical damage. We sandwiched the biomolecules with the solid gallium films followed by low-temperature welding of the films for direct sealing. The gallium can not only protect DNA and enzymes from various physical and chemical damages but also allow the on-demand release of biomolecules by applying vibration to break the liquid gallium. We demonstrated that a DNA-coded image file can be recovered with up to 99.9% sequence retention after an accelerated aging test. We also showed the practical applications of the controllable release of bioreagents in a one-pot RPA-CRISPR/Cas12a reaction for SARS-COV-2 screening with a low detection limit of 10 copies within 40 min. This work may facilitate the development of robust and stimuli-responsive biomolecule capsules by using low-melting metals for biotechnology.
摘要:
生物分子的稳健封装和可控释放具有广泛的生物医学应用,从生物传感,将药物输送到信息存储。然而,传统的生物分子封装策略在复杂的操作中具有局限性,光学不稳定性,解封困难。这里,我们报告一个简单的,健壮,基于具有低温相变特性的镓液态金属的无溶剂生物分子封装策略,自我修复,高气密性密封,和固有的抗光学损伤。我们将生物分子与固体镓薄膜夹在中间,然后对薄膜进行低温焊接以直接密封。镓不仅可以保护DNA和酶免受各种物理和化学损害,而且还可以通过施加振动以破坏液体镓来按需释放生物分子。我们证明了在加速老化测试后,可以恢复DNA编码的图像文件,序列保留率高达99.9%。我们还展示了生物试剂的可控释放在一锅法RPA-CRISPR/Cas12a反应中的实际应用,用于SARS-COV-2筛选,检测限在40分钟内达到10个拷贝。这项工作可以通过将低熔点金属用于生物技术来促进坚固且刺激响应的生物分子胶囊的开发。
公众号