关键词: Polyvinylpyrrolidone electrospinning low molecular weight morphology nanofibers parameters optimization quantitative analysis

来  源:   DOI:10.3390/polym16091217   PDF(Pubmed)

Abstract:
Polyvinylpyrrolidone (PVP) is a synthetic polymer that holds significance in various fields such as biomedical, medical, and electronics, due to its biocompatibility and exceptional dielectric properties. Electrospinning is the most commonly used tool to fabricate fibers because of its convenience and the wide choice of parameter optimization. Various parameters, including solution molarity, flow rate, voltage, needle gauge, and needle-to-collector distance, can be optimized to obtain the desired morphology of the fibers. Although PVP is commercially available in various molecular weights, PVP with a molecular weight of 130,000 g/mol is generally considered to be the easiest PVP to fabricate fibers with minimal challenges. However, the fiber diameter in this case is usually in the micron regime, which limits the utilization of PVP fibers in fields that require fiber diameters in the nano regime. Generally, PVP with a lower molecular weight, such as 10,000 g/mol and 55,000 g/mol, is known to present challenges in fiber preparation. In the current study, parameter optimization for PVP possessing molecular weights of 10,000 g/mol and 55,000 g/mol was carried out to obtain nanofibers. The electrospinning technique was utilized for fiber fabrication by optimizing the above-mentioned parameters. SEM analysis was performed to analyze the fiber morphology, and quantitative analysis was performed to correlate the effect of parameters on the fiber morphology. This research study will lead to various applications, such as drug encapsulation for sustained drug release and nanoparticles/nanotubes encapsulation for microwave absorption applications.
摘要:
聚乙烯吡咯烷酮(PVP)是一种合成聚合物,在生物医学等各个领域具有重要意义。medical,和电子,由于其生物相容性和特殊的介电性能。静电纺丝是制造纤维最常用的工具,因为它的方便和参数优化的广泛选择。各种参数,包括溶液摩尔浓度,流量,电压,针规,和针头到收集器的距离,可被优化以获得所需形态的纤维。虽然PVP在商业上有各种分子量,分子量为130,000g/mol的PVP通常被认为是制造具有最小挑战的纤维的最容易的PVP。然而,在这种情况下,纤维直径通常在微米范围内,这限制了PVP纤维在需要纳米范围内的纤维直径的领域中的使用。一般来说,分子量较低的PVP,例如10,000g/mol和55,000g/mol,已知在纤维制备中存在挑战。在目前的研究中,对分子量为10,000g/mol和55,000g/mol的PVP进行参数优化以获得纳米纤维。通过优化上述参数,将静电纺丝技术用于纤维制造。进行SEM分析以分析纤维形态,并进行定量分析以关联参数对纤维形态的影响。这项研究将导致各种应用,例如用于持续药物释放的药物封装和用于微波吸收应用的纳米颗粒/纳米管封装。
公众号