关键词: biomaterials biomimetics bionic surface texturing cutting tools dynamic impact erosion friction green tribology mechanical property metamaterials nature-inspired tribology sliding wear surface modification sustainable development

来  源:   DOI:10.3390/biomimetics9040209   PDF(Pubmed)

Abstract:
Friction, wear, and the consequent energy dissipation pose significant challenges in systems with moving components, spanning various domains, including nanoelectromechanical systems (NEMS/MEMS) and bio-MEMS (microrobots), hip prostheses (biomaterials), offshore wind and hydro turbines, space vehicles, solar mirrors for photovoltaics, triboelectric generators, etc. Nature-inspired bionic surfaces offer valuable examples of effective texturing strategies, encompassing various geometric and topological approaches tailored to mitigate frictional effects and related functionalities in various scenarios. By employing biomimetic surface modifications, for example, roughness tailoring, multifunctionality of the system can be generated to efficiently reduce friction and wear, enhance load-bearing capacity, improve self-adaptiveness in different environments, improve chemical interactions, facilitate biological interactions, etc. However, the full potential of bioinspired texturing remains untapped due to the limited mechanistic understanding of functional aspects in tribological/biotribological settings. The current review extends to surface engineering and provides a comprehensive and critical assessment of bioinspired texturing that exhibits sustainable synergy between tribology and biology. The successful evolving examples from nature for surface/tribological solutions that can efficiently solve complex tribological problems in both dry and lubricated contact situations are comprehensively discussed. The review encompasses four major wear conditions: sliding, solid-particle erosion, machining or cutting, and impact (energy absorbing). Furthermore, it explores how topographies and their design parameters can provide tailored responses (multifunctionality) under specified tribological conditions. Additionally, an interdisciplinary perspective on the future potential of bioinspired materials and structures with enhanced wear resistance is presented.
摘要:
摩擦力,磨损,随之而来的能量耗散在具有移动组件的系统中构成了重大挑战,跨越各个领域,包括纳米机电系统(NEMS/MEMS)和生物MEMS(微型机器人),髋关节假体(生物材料),海上风力和水力涡轮机,太空飞行器,用于光伏的太阳能镜,摩擦发电机,等。自然启发的仿生表面提供了有效的纹理策略的有价值的例子,涵盖各种几何和拓扑方法,以减轻各种场景中的摩擦效应和相关功能。通过采用仿生表面修饰,例如,粗糙度剪裁,可以产生系统的多功能性,以有效地减少摩擦和磨损,提高承载能力,提高在不同环境中的自我适应能力,改善化学相互作用,促进生物相互作用,等。然而,由于对摩擦学/生物摩擦学环境中功能方面的机械理解有限,因此生物启发纹理的全部潜力仍未开发。当前的评论扩展到表面工程,并提供了生物启发的纹理的全面和关键的评估,表现出摩擦学和生物学之间的可持续协同作用。全面讨论了从自然界中成功发展的表面/摩擦学解决方案的例子,这些解决方案可以有效解决干燥和润滑接触情况下的复杂摩擦学问题。审查包括四个主要的磨损条件:滑动,固体颗粒侵蚀,加工或切割,和冲击(能量吸收)。此外,它探讨了地形及其设计参数如何在指定的摩擦学条件下提供定制的响应(多功能)。此外,提出了具有增强耐磨性的生物启发材料和结构的未来潜力的跨学科观点。
公众号