关键词: Biocatalysis Fluorine Metabolic engineering Synthetic biology Synthetic metabolism in vitro biosynthesis

Mesh : Substrate Specificity Escherichia coli / enzymology genetics Pseudomonas putida / enzymology Halogenation Biocatalysis Amino Acids / chemistry Glycine Hydroxymethyltransferase / metabolism chemistry genetics Threonine / chemistry metabolism analogs & derivatives Fluorine / chemistry Aldehydes / chemistry metabolism

来  源:   DOI:10.1016/bs.mie.2024.02.016

Abstract:
Fluorine (F) is an important element in the synthesis of molecules broadly used in medicine, agriculture, and materials. F addition to organic structures represents a unique strategy for tuning molecular properties, yet this atom is rarely found in Nature and approaches to produce fluorometabolites (such as fluorinated amino acids, key building blocks for synthesis) are relatively scarce. This chapter discusses the use of L-threonine aldolase enzymes (LTAs), a class of enzymes that catalyze reversible aldol addition to the α-carbon of glycine. The C-C bond formation ability of LTAs, together with their known substrate promiscuity, make them ideal for in vitro F biocatalysis. Here, we describe protocols to harness the activity of the low-specificity LTAs isolated from Escherichia coli and Pseudomonas putida on 2-fluoroacetaldehyde to efficiently synthesize 4-fluoro-L-threonine in vitro. This chapter also provides a comprehensive account of experimental protocols to implement these activities in vivo. These methods are illustrative and can be adapted to produce other fluorometabolites of interest.
摘要:
氟(F)是医药中广泛使用的分子合成中的重要元素。农业,和材料。F添加到有机结构代表了调整分子特性的独特策略,然而,这种原子在自然界和产生氟代谢物的方法中很少发现(如氟化氨基酸,合成的关键构建块)相对稀缺。本章讨论了L-苏氨酸醛缩酶(LTAs)的使用,一类催化甘氨酸α-碳可逆醛醇加成的酶。LTAs的C-C键形成能力,加上他们已知的底物滥交,使它们成为体外F生物催化的理想选择。这里,我们描述了利用分离自大肠杆菌和恶臭假单胞菌的低特异性LTA对2-氟乙醛的活性在体外有效合成4-氟-L-苏氨酸的方案。本章还提供了在体内实施这些活动的实验方案的全面说明。这些方法是说明性的,并且可以适用于产生其他感兴趣的氟代谢物。
公众号