关键词: Carbohydrate and lipid metabolism Cyantraniliprole Ecdysteroid biosynthesis Spodoptera frugiperda Sublethal effects

Mesh : Animals Spodoptera Ecdysteroids Lipid Metabolism Larva Insecticides / toxicity Carbohydrates Pyrazoles ortho-Aminobenzoates

来  源:   DOI:10.1016/j.pestbp.2024.105827

Abstract:
In addition to the acute lethal toxicity, insecticides might affect population dynamics of insect pests by inducing life history trait changes under low concentrations, however, the underlying mechanisms remain not well understood. Here we examined systemic impacts on development and reproduction caused by low concentration exposures to cyantraniliprole in the fall armyworm (FAW), Spodoptera frugiperda, and the putative underlying mechanisms were investigated. The results showed that exposure of third-instar larvae to LC10 and LC30 of cyantraniliprole significantly extended larvae duration by 1.46 and 5.41 days, respectively. Treatment with LC30 of cyantraniliprole significantly decreased the pupae weight and pupation rate as well as the longevity, fecundity and egg hatchability of female adults. Consistently, we found that exposure of FAW to LC30 cyantraniliprole downregulated the mRNA expression of four ecdysteroid biosynthesis genes including SfNobo, SfShd, SfSpo and SfDib and one ecdysone response gene SfE75 in the larvae as well as the gene encoding vitellogenin (SfVg) in the female adults. We also found that treatment with LC30 of cyantraniliprole significantly decreased the whole body levels of glucose, trehalose, glycogen and triglyceride in the larvae. Our results indicate that low concentration of cyantraniliprole inhibited FAW development by disruption of ecdysteroid biosynthesis as well as carbohydrate and lipid metabolism, which have applied implications for the control of FAW.
摘要:
除了急性致死毒性,杀虫剂可能通过诱导低浓度下的生活史性状变化来影响害虫的种群动态,然而,潜在的机制仍然没有得到很好的理解。在这里,我们研究了秋季粘虫(FAW)中低浓度暴露于cyantraniliprole对发育和繁殖的系统影响,节食夜蛾,并对假定的潜在机制进行了研究。结果表明,三龄幼虫暴露于蓝藻的LC10和LC30可以显着延长幼虫的持续时间1.46和5.41天,分别。用LC30的cyclaniliprole治疗显着降低了p的重量和化page率以及寿命,雌性成虫的繁殖力和卵孵化率。始终如一,我们发现,FAW暴露于LC30蓝藻多糖下调了包括SfNobo在内的四个蜕皮类固醇生物合成基因的mRNA表达,SfShd,幼虫中的SfSpo和SfDib以及一个蜕皮激素反应基因SfE75,以及雌性成虫中的编码卵黄蛋白原(SfVg)的基因。我们还发现,用LC30的cytraniliprole治疗显着降低了整个身体的葡萄糖水平,海藻糖,幼虫中的糖原和甘油三酯。我们的结果表明,低浓度的cyantraniliprole通过破坏蜕皮类固醇生物合成以及碳水化合物和脂质代谢来抑制FAW发育,这对一汽的控制有应用意义。
公众号