关键词: RNA optical tweezers single-molecule

Mesh : Optical Tweezers Nucleic Acid Conformation SARS-CoV-2 / genetics Single Molecule Imaging / methods COVID-19 / virology Humans RNA, Viral / chemistry RNA / chemistry Frameshifting, Ribosomal RNA-Binding Proteins / chemistry metabolism

来  源:   DOI:10.1042/BST20231232   PDF(Pubmed)

Abstract:
RNA, a dynamic and flexible molecule with intricate three-dimensional structures, has myriad functions in disease development. Traditional methods, such as X-ray crystallography and nuclear magnetic resonance, face limitations in capturing real-time, single-molecule dynamics crucial for understanding RNA function. This review explores the transformative potential of single-molecule force spectroscopy using optical tweezers, showcasing its capability to directly probe time-dependent structural rearrangements of individual RNA molecules. Optical tweezers offer versatility in exploring diverse conditions, with the potential to provide insights into how environmental changes, ligands and RNA-binding proteins impact RNA behaviour. By enabling real-time observations of large-scale structural dynamics, optical tweezers emerge as an invaluable tool for advancing our comprehension of RNA structure and function. Here, we showcase their application in elucidating the dynamics of RNA elements in virology, such as the pseudoknot governing ribosomal frameshifting in SARS-CoV-2.
摘要:
RNA,具有复杂三维结构的动态灵活分子,在疾病发展中具有无数功能。传统方法,如X射线晶体学和核磁共振,面临实时捕获的限制,单分子动力学对于理解RNA功能至关重要。这篇综述探讨了使用光镊子的单分子力谱的转化潜力,展示了其直接探测单个RNA分子的时间依赖性结构重排的能力。光学镊子在探索不同的条件下提供了多功能性,有可能提供对环境变化的见解,配体和RNA结合蛋白影响RNA行为。通过实现大规模结构动力学的实时观测,光镊子成为促进我们理解RNA结构和功能的宝贵工具。这里,我们展示了它们在阐明病毒学中RNA元件动力学方面的应用,例如SARS-CoV-2中控制核糖体移码的假结。
公众号