关键词: Acid rain Carbon quality-temperature hypothesis Fungi to bacteria ratio Soil autotrophic respiration Soil heterotrophic respiration Temperature sensitivity (Q10)

Mesh : Ecosystem Soil Temperature Carbon Acid Rain Respiration Carbon Cycle

来  源:   DOI:10.1016/j.scitotenv.2024.171370

Abstract:
Soil respiration the second-largest carbon flux in terrestrial ecosystems, has been extensively studied across a wide range of biomes. Surprisingly, no consensus exist on how acid rain (AR) impacts the spatiotemporal pattern of soil respiration. Therefore, we conducted a meta-analysis using 318 soil respiration and 263 soil respiration temperature sensitivity (Q10) data points obtained from 48 studies to assess the impact of AR on soil respiration components and their Q10. The results showed that AR reduced soil total respiration (Rt) and soil autotrophic respiration (Ra) by 7.41 % and 20.75 %, respectively. As the H+ input increased, the response rates of Ra to AR (RR-Ra) and soil heterotrophic respiration (Rh) to AR (RR-Rh) decreased and increased, respectively. With increased AR duration, the RR-Ra increased, whereas the RR-Rh did not change. AR increased the Q10 of Rt (Rt-Q10) and Rh (Rh-Q10) by 1.92 % and 9.47 %, respectively, and decreased the Q10 of Ra (Ra-Q10) by 2.77 %. Increased mean annual temperature, mean annual precipitation, and initial soil organic carbon increased the response rate of Ra-Q10 to AR (RR-Ra-Q10) and decreased the response rate of Rh-Q10 to AR (RR-Rh-Q10). However, as the AR frequency and initial soil pH increased, both RR-Ra-Q10 and RR-Rh-Q10 also increased. In summary, AR decreased Rt but increased Q10, likely due to soil acidification (soil pH decreased by 7.84 %), reducing plant root biomass (decreased by 5.67 %) and soil microbial biomass (decreased by 5.67 %), changing microbial communities (increased fungi to bacteria ratio of 15.91 %), and regulated by climate, vegetation, soil and AR regimes. To the best of our knowledge, this is the first study to reveal the large-scale, varied response patterns of soil respiration components and their Q10 to AR. It highlights the importance of applying the reductionism theory in soil respiration research to enhance our understanding of soil carbon cycling processes with in the context of global climate change.
摘要:
土壤呼吸是陆地生态系统中第二大的碳通量,已经在广泛的生物群落中进行了广泛的研究。令人惊讶的是,关于酸雨(AR)如何影响土壤呼吸的时空格局,尚无共识。因此,我们使用来自48项研究的318个土壤呼吸和263个土壤呼吸温度敏感性(Q10)数据点进行了荟萃分析,以评估AR对土壤呼吸成分及其Q10的影响.结果表明,AR降低了土壤总呼吸(Rt)和土壤自养呼吸(Ra)的7.41%和20.75%,分别。随着H+输入的增加,Ra对AR(RR-Ra)和土壤异养呼吸(Rh)对AR(RR-Rh)的响应率降低和升高,分别。随着AR持续时间的增加,RR-Ra增加,而RR-Rh没有变化。AR使Rt(Rt-Q10)和Rh(Rh-Q10)的Q10分别增加1.92%和9.47%,分别,Ra(Ra-Q10)的Q10下降2.77%。年平均气温升高,年平均降水量,初始土壤有机碳增加了Ra-Q10对AR的响应率(RR-Ra-Q10),降低了Rh-Q10对AR的响应率(RR-Rh-Q10)。然而,随着AR频率和初始土壤pH值的增加,RR-Ra-Q10和RR-Rh-Q10也增加。总之,AR降低了Rt,但增加了Q10,可能是由于土壤酸化(土壤pH值降低了7.84%),减少植物根系生物量(减少5.67%)和土壤微生物生物量(减少5.67%),改变微生物群落(真菌与细菌的比例增加15.91%),受气候调节,植被,土壤和AR制度。据我们所知,这是第一项揭示大规模,土壤呼吸成分及其Q10对AR的不同响应模式。它强调了在土壤呼吸研究中应用还原论理论的重要性,以增强我们对全球气候变化背景下土壤碳循环过程的理解。
公众号