关键词: Elevated temperature Modulus of elasticity SEM TGA UHPGPC

来  源:   DOI:10.1016/j.heliyon.2024.e24263   PDF(Pubmed)

Abstract:
This paper provides a comprehensive review of ultra-high-performance geopolymer concrete (UHPGPC), an innovative, eco-friendly, and cost-effective variant of ultra-high-performance concrete (UHPC), devised to meet the rising request for ultra-high-strength construction materials. Previous research papers have not thoroughly analyzed and compared the rheological, physical, durability, and microstructural properties of UHPGPC with UHPC. Similarly, review articles scarcely investigate UHPGPC\'s strength properties and microstructural behavior under high temperatures. This paper includes an assessment of the correlation between compressive strength, splitting tensile strength, and modulus of elasticity (MOE). The current study also compares chloride ion penetration test outcomes, elevated temperature, electrical resistivity, and porosity tests to evaluate durability. To analyze the microstructure of UHPGPC, the paper assesses results from Fourier Transform Infrared Spectroscopy (FT-IR), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), and Mercury Intrusion Porosimetry (MIP). The findings from the present paper suggest that UHPGPC effectively meets the ideal mechanical property specifications of UHPC. Compared to UHPC, UHPGPC displayed a higher ion passage propensity due to larger pores (>100 nm). Geopolymer technologies present a greener path for producing UHPC by consuming less energy and emitting reduced CO2. Introducing mineral fillers like silica fume impacts the mixture\'s flowability and increases its water needs. However, adding an optimal ratio of micro-silica as a partial substitute for granulated blast furnace slag further bolsters the strength characteristics of UHPGPC. The strength of UHPC can also be notably improved by adjusting the water-to-binder ratio, with specific ratios yielding considerable enhancements in compression strength. The selection of an alkaline activator plays a pivotal role in UHPC\'s heat resilience. Among them, a combination of potassium hydroxide and sodium silicate is the prime chemical activator for boosting strength performance, durability behavior, and microstructural attributes, particularly at temperatures beyond 600 °C. Eco-friendly Geopolymer Composites (EGCs) offer lower embodied energy and CO2 emissions than traditional composites, with certain components like polyvinyl alcohol fibers being key contributors to these emissions. Progress in self-healing materials is driving sustainability in construction through innovative techniques, such as bacterial applications and specific chemical reactions. The strength and workability of Engineered Geopolymer Composites are influenced by their fiber content, with certain fibers interacting weaker than others. On a microstructural level, UHPGPC has a relatively weaker structure than UHPC due to differences in pore size, but its durability is improved when reinforced with fibers.
摘要:
本文对超高性能地质聚合物混凝土(UHPGPC)进行了全面综述,一个创新的,环保,和具有成本效益的超高性能混凝土(UHPC)变体,设计以满足日益增长的超高强度建筑材料的要求。以前的研究论文没有彻底的分析和比较流变学,物理,耐用性,UHPGP与UHPC的微观结构性质。同样,评论文章很少研究UHPGPC在高温下的强度性能和微观结构行为。本文包括对抗压强度之间的相关性的评估,劈裂抗拉强度,和弹性模量(MOE)。目前的研究还比较了氯离子渗透试验的结果,温度升高,电阻率,和孔隙率测试来评估耐久性。为了分析UHPGPC的微观结构,本文评估了傅里叶变换红外光谱(FT-IR)的结果,热重分析(TGA),扫描电子显微镜(SEM),和水银入侵孔隙率测定法(MIP)。本文的研究结果表明,UHPGPC有效地满足了UHPC的理想机械性能规格。与UHPC相比,由于较大的孔(>100nm),UHPGPC显示出更高的离子通过倾向。地质聚合物技术通过消耗更少的能量和排放减少的CO2为生产UHPC提供了更绿色的途径。引入矿物填料如硅粉会影响混合物的流动性并增加其对水的需求。然而,添加最佳比例的微二氧化硅作为粒状高炉矿渣的部分替代品进一步增强了UHPGPC的强度特性。UHPC的强度也可以通过调节水与粘合剂的比例来显著提高,与特定的比率产生相当大的增强压缩强度。碱性活化剂的选择在UHPC的热回弹性中起着关键作用。其中,氢氧化钾和硅酸钠的组合是提高强度性能的主要化学活化剂,耐久性行为,和微观结构属性,特别是在超过600°C的温度下。生态友好型地质聚合物复合材料(EGCs)提供比传统复合材料更低的能量和二氧化碳排放。某些成分,如聚乙烯醇纤维是这些排放的主要贡献者。自我修复材料的进步正在通过创新技术推动建筑的可持续性,如细菌应用和特定的化学反应。工程地质聚合物复合材料的强度和可加工性受其纤维含量的影响,某些纤维的相互作用比其他纤维弱。在微观结构层面上,由于孔径的差异,UHPGPC具有比UHPC相对较弱的结构,但是当用纤维增强时,它的耐久性得到改善。
公众号