关键词: Bioavailability Copper Iron Micronutrients Ocean acidification Speciation

Mesh : Iron / metabolism Copper Zinc Seawater Micronutrients Hydrogen-Ion Concentration Ocean Acidification Trace Elements Metals Acids Ferric Compounds Ions Ferrous Compounds

来  源:   DOI:10.1016/j.marpolbul.2023.115991

Abstract:
This review has been undertaken to understand the effectiveness of ocean acidification on oceanic micronutrient metal cycles (iron, copper and zinc) and its potential impacts on marine biota. Ocean acidification will slow down the oxidation of Fe(II) thereby retarding Fe(III) formation and subsequent hydrolysis/precipitation leading to an increase in iron bioavailability. Further, the increased primary production sustains enzymatic bacteria assisted Fe(III) reduction and subsequently the binding of weaker ligands favours the dissociation of free Fe(II) ions, thus increasing the bioavailability. The increasing pCO2 condition increases the bioavailability of copper ions by decreasing the availability of free CO32- ligand concentration. The strong complexation by dissolved organic matter may decrease the bioavailable iron and zinc ion concentration. Since ocean acidification affects the bioavailability of essential metals, studies on the uptake rates of these elements by phytoplankton should be carried out to reveal the future scenario and its effect on natural environment.
摘要:
进行了这项审查,以了解海洋酸化对海洋微量营养素金属循环的有效性(铁,铜和锌)及其对海洋生物群的潜在影响。海洋酸化将减缓Fe(II)的氧化,从而延缓Fe(III)的形成和随后的水解/沉淀,导致铁生物利用度的增加。Further,增加的初级生产维持酶促细菌辅助Fe(III)还原,随后较弱配体的结合有利于游离Fe(II)离子的解离,从而增加生物利用度。增加的pCO2条件通过降低游离CO32-配体浓度的可用性来增加铜离子的生物利用度。溶解的有机物的强烈络合可能会降低生物可利用的铁和锌离子浓度。由于海洋酸化会影响必需金属的生物利用度,应该对浮游植物吸收这些元素的速率进行研究,以揭示未来的情景及其对自然环境的影响。
公众号