关键词: Disaccharides cello-oligosaccharides isomalto-oligosaccharides maltodextrin prebiotics and probiotics

Mesh : Glycosides Polymerization Oligosaccharides / chemistry Prebiotics Synbiotics Limosilactobacillus reuteri Probiotics / metabolism

来  源:   DOI:10.1111/1750-3841.16851

Abstract:
Gluco-oligosaccharides (GlcOS) are potential prebiotics that positively modulate beneficial gut commensals like lactobacilli. For the rational design of GlcOS as prebiotics or combined with lactobacilli as synbiotics, it is important to establish the structure requirements of GlcOS and specificity toward lactobacilli. Herein, the utilization of 10 GlcOS with varied degrees of polymerization (DP) and glycosidic linkages by 7 lactobacilli strains (Levilactobacillus brevis ATCC 8287, Limosilactobacillus reuteri ATCC PTA 6475, Lacticaseibacillus rhamnosus ATCC 53103, Lentilactobacillus buchneri ATCC 4005, Limosilactobacillus fermentum FUA 3589, Lactiplantibacillus plantarum WCFS1, and Lactobacillus gasseri ATCC 33323) was studied. L. brevis ATCC 8287 was the only strain that grew on α/β-(1→4/6) linked disaccharides, whereas other strains showed diverse patterns, dependent on the availability of genes encoding sugar transporters and catabolic enzymes. The effect of DP on GlcOS utilization was strain dependent. β-(1→4) Linked cello-oligosaccharides (COS) supported the growth of L. brevis ATCC 8287 and L. plantarum WCFS1, and shorter COS (DP 2-3) were preferentially utilized over longer COS (DP 4-7) (consumption ≥90% vs. 40%-60%). α-(1→4) Linked maltotriose and maltodextrin (DP 2-11) were effectively utilized by L. brevis ATCC 8287, L. reuteri ATCC 6475, and L. plantarum WCFS1, but not L. fermentum FUA 3589. Growth of L. brevis ATCC 8287 on branched isomalto-oligosaccharides (DP 2-6) suggested preferential consumption of DP 2-3, but no preference between α-(1→6) and α-(1→4) linkages. The knowledge of the structure-specific GlcOS utilization by different lactobacilli from this study helps the structural rationale of GlcOS for prebiotic development.
摘要:
葡糖寡糖(GlcOS)是潜在的益生元,可积极调节有益的肠道共生菌,如乳酸杆菌。为了合理设计GlcOS作为益生元或与乳酸杆菌结合作为合生元,重要的是建立GlcOS的结构要求和对乳杆菌的特异性。在这里,研究了7个乳杆菌菌株(短乳杆菌ATCC8287,罗氏乳杆菌ATCCPTA6475,鼠李糖乳杆菌ATCC53103,慢性乳杆菌ATCC,植物乳杆菌ATCC4005,植物乳杆菌35FCC)对10个具有不同聚合度(DP)和糖苷连接的GlcOS的利用。短乳杆菌ATCC8287是唯一在α/β-(1→4/6)连接的二糖上生长的菌株,而其他菌株表现出不同的模式,依赖于编码糖转运蛋白和分解代谢酶的基因的可用性。DP对GlcOS利用的影响依赖于菌株。β-(1→4)连接的细胞寡糖(COS)支持短乳杆菌ATCC8287和植物乳杆菌WCFS1的生长,较短的COS(DP2-3)优先于较长的COS(DP4-7)(消耗≥90%与40%-60%)。α-(1→4)连接的麦芽三糖和麦芽糊精(DP2-11)被短乳杆菌ATCC8287,罗伊氏乳杆菌ATCC6475和植物乳杆菌WCFS1有效利用,但未利用发酵乳杆菌FUA3589。短乳杆菌ATCC8287在支链异麦芽寡糖(DP2-6)上的生长表明DP2-3的优先消费,但α-(1→6)和α-(1→4)键之间没有偏好。来自本研究的不同乳杆菌对结构特异性GlcOS利用的知识有助于GlcOS用于益生元开发的结构原理。
公众号