关键词: Bacteria Bioaerosol Disinfection Fungi Hospital Indoor air

Mesh : Humans Metal Nanoparticles Silver Ultraviolet Rays Disinfection / methods Air Pollution, Indoor / prevention & control

来  源:   DOI:10.1016/j.jenvman.2023.118798

Abstract:
Pathogenic microorganisms are a major concern in indoor environments, particularly in sensitive facilities such as hospitals, due to their potential to cause nosocomial infections. This study evaluates the concentration of airborne bacteria and fungi in the University Hospital Complex of Albacete (Spain), comparing the results with recent literature. Staphylococcus is identified as the most prevalent bacterial genus with a percentage distribution of 35%, while Aspergillus represents the dominant fungal genus at 34%. The lack of high Technology Readiness Levels (TRL 6, TRL 7) for effective indoor air purification requires research efforts to bridge this knowledge gap. A screening of disinfection technologies for pathogenic airborne microorganisms such as bacteria and fungi is conducted. The integration of filtration, irradiation or and (electro)chemical gas treatment systems in duct flows is discussed to enhance the design of the air-conditioning systems for indoor air purification. Concerns over microbial growth have led to recent studies on coating commercial fibrous air filters with antimicrobial particles (silver nanoparticles, iron oxide nanowires) and polymeric materials (polyaniline, polyvinylidene fluoride). Promising alternatives to traditional short-wave UV-C energy for disinfection include LED and Far-UVC irradiation systems. Additionally, research explores the use of TiO2 and TiO2 doped with metals (Ag, Cu, Pt) in filters with photocatalytic properties, enabling the utilization of visible or solar light. Hybrid photocatalysis, combining TiO2 with polymers, carbon nanomaterials, or MXene nanomaterials, enhances the photocatalytic process. Chemical treatment systems such as aerosolization of biocidal agents (benzalkonium chloride, hydrogen peroxide, chlorine dioxide or ozone) with their possible combination with other technologies such as adsorption, filtration or photocatalysis, are also tested for gas disinfection. However, the limited number of studies on the use of electrochemical technology poses a challenge for further investigation into gas-phase oxidant generation, without the formation of harmful by-products, to raise its TRL for effectively inactivating airborne microorganisms in indoor environments.
摘要:
病原微生物是室内环境中的主要问题,特别是在医院等敏感设施中,由于它们可能引起医院感染。这项研究评估了阿尔巴塞特大学医院大楼(西班牙)中空气传播的细菌和真菌的浓度,将结果与最近的文献进行比较。葡萄球菌被确定为最普遍的细菌属,百分比分布为35%,而曲霉属占优势真菌属的34%。缺乏有效的室内空气净化的高技术准备水平(TRL6,TRL7)需要研究工作来弥合这一知识差距。对病原性空气传播微生物如细菌和真菌的消毒技术进行筛选。过滤的整合,讨论了管道流中的辐照或(电)化学气体处理系统,以增强室内空气净化空调系统的设计。对微生物生长的担忧导致了最近用抗菌颗粒(银纳米颗粒,氧化铁纳米线)和聚合物材料(聚苯胺,聚偏氟乙烯)。用于消毒的传统短波UV-C能量的有希望的替代品包括LED和Far-UVC照射系统。此外,研究探索了TiO2和掺杂金属的TiO2(Ag,Cu,Pt)在具有光催化性能的过滤器中,使可见光或太阳光的利用。混合光催化,将TiO2与聚合物结合起来,碳纳米材料,或者MXene纳米材料,增强了光催化过程。化学处理系统,例如杀生物剂的雾化(苯扎氯铵,过氧化氢,二氧化氯或臭氧)与吸附等其他技术的可能组合,过滤或光催化,还测试了气体消毒。然而,对电化学技术使用的研究数量有限,对进一步研究气相氧化剂的产生提出了挑战,不形成有害的副产品,提高其TRL,以有效灭活室内环境中的空气微生物。
公众号