关键词: fast water drainage high adhesion solid margin water channel

来  源:   DOI:10.3390/biomimetics8010060

Abstract:
Liquid flows at the solid surface and drains at the margin under gravity are ubiquitous in our daily lives. Previous research mainly focuses on the effect of substantial margin\'s wettability on liquid pinning and has proved that hydrophobicity inhibits liquids from overflowing margins while hydrophilicity plays the opposite role. However, the effect of solid margins\' adhesion properties and their synergy with wettability on the overflowing behavior of water and resultant drainage behaviors are rarely studied, especially for large-volume water accumulation on the solid surface. Here, we report the solid surfaces with high-adhesion hydrophilic margin and hydrophobic margin stably pin the air-water-solid triple contact lines at the solid bottom and solid margin, respectively, and then drain water faster through stable water channels termed water channel-based drainage over a wide range of water flow rates. The hydrophilic margin promotes the overflowing of water from top to bottom. It constructs a stable \"top + margin + bottom\" water channel, and a high-adhesion hydrophobic margin inhibits the overflowing from margin to bottom and constructs a stable \"top + margin\" water channel. The constructed water channels essentially decrease marginal capillary resistances, guide top water onto the bottom or margin, and assist in draining water faster, under which gravity readily overcomes the surface tension resistance. Consequently, the water channel-based drainage mode achieves 5-8 times faster drainage behavior than the no-water channel drainage mode. The theoretical force analysis also predicts the experimental drainage volumes for different drainage modes. Overall, this article reveals marginal adhesion and wettability-dependent drainage modes and provides motivations for drainage plane design and relevant dynamic liquid-solid interaction for various applications.
摘要:
在我们的日常生活中,固体表面的液体流动和重力作用下边缘的排水无处不在。以前的研究主要集中在大量边缘的润湿性对液体钉扎的影响,并证明疏水性抑制液体从溢出边缘,而亲水性起相反的作用。然而,固体边缘的影响\'粘附性能及其与润湿性的协同作用对水的溢出行为和由此产生的排水行为很少研究,特别是对于固体表面的大量积水。这里,我们报告了具有高粘附性亲水边缘和疏水边缘的固体表面在固体底部和固体边缘稳定地固定空气-水-固体三重接触线,分别,然后通过稳定的水通道更快地排水,称为基于水通道的排水,在很宽的水流量范围内。亲水边缘促进水从顶部到底部的溢出。它构造了一个稳定的“顶部+边缘+底部”水道,高粘附性疏水边缘抑制了从边缘到底部的溢出,并构建了稳定的“顶部边缘”水道。构造的水通道基本上降低了边缘毛细管阻力,将顶部水引导到底部或边缘,并帮助更快地排水,在这种情况下,重力很容易克服表面张力阻力。因此,基于水通道的排水模式比无水通道的排水模式快5-8倍。理论力分析还预测了不同排水模式的实验排水量。总的来说,本文揭示了边缘粘附性和润湿性相关的排水模式,并为排水平面设计和相关的动态液-固相互作用提供了动机。
公众号