关键词: Hog1 TCA cycle ethanol fermentation metabolic change white-rot fungi

Mesh : Fermentation Lignin Up-Regulation Polyporales Basidiomycota / metabolism Saccharomyces cerevisiae / metabolism Ethanol / metabolism Mitogen-Activated Protein Kinases / metabolism Saccharomyces cerevisiae Proteins / genetics

来  源:   DOI:10.1093/bbb/zbac203

Abstract:
Wood biomass conversion for fossil resource replacement could result in the sustainable production of chemicals, although lignin represents an obstacle to efficient polysaccharide use. White-rot fungus Phlebia sp. MG-60 reportedly selectively and aerobically degrades lignin in hardwood, then it begins cellulose saccharification from the delignified wood to produce ethanol. Environmental conditions might change white-rot fungi-driven biomass conversion. However, how the environmental response sensor affects ethanol fermentation in white-rot fungi remains elusive. In this study, we focused on MGHOG1, the yeast Hog1 homolog in Phlebia sp. MG-60, a presumably important player in osmoresponse. We generated MGHOG1 overexpressing (OE) transformants in Phlebia sp. MG-60, exhibiting slower mycelial growth compared with the wild-type under salinity stress. MGHOG1 overexpressing liquid cultures displayed suppressed mycelial growth and ethanol fermentation. Therefore, MGHOG1 potentially influences ethanol fermentation and mycelial growth in Phlebia sp. MG-60. This study provides novel insights into the regulation of white-rot fungi-mediated biomass conversion.
摘要:
木材生物质转化为化石资源替代可能导致化学品的可持续生产,虽然木质素代表有效使用多糖的障碍。白腐真菌Phlebiasp。据报道,MG-60选择性和需氧降解硬木中的木质素,然后它开始从脱木质素的木材中糖化纤维素以生产乙醇。环境条件可能会改变白腐真菌驱动的生物质转化。然而,环境响应传感器如何影响白腐真菌中的乙醇发酵仍然难以捉摸。在这项研究中,我们重点研究了Phlebiasp中的酵母Hog1同源物MGHOG1。MG-60,可能是渗透反应中的重要参与者。我们在Phlebiasp中产生了MGHOG1过表达(OE)的转化体。MG-60,在盐度胁迫下与野生型相比,菌丝生长较慢。MGHOG1过表达的液体培养物显示出抑制的菌丝体生长和乙醇发酵。因此,MGHOG1可能会影响Phlebiasp的乙醇发酵和菌丝生长。MG-60.这项研究为白腐真菌介导的生物量转化的调控提供了新的见解。
公众号