关键词: acoustophoresis biomedical applications biosensors cancer diagnosis cell sorting dielectrophoresis disease modeling electrophoresis lab-on-a-chip magnetophoresis micromixers optical trapping organ-on-a-chip particle enrichment particle separation point-of-care pressure fields thermal fields

Mesh : Microfluidics Microfluidic Analytical Techniques Lab-On-A-Chip Devices Biosensing Techniques DNA

来  源:   DOI:10.3390/bios12111023

Abstract:
Both passive and active microfluidic chips are used in many biomedical and chemical applications to support fluid mixing, particle manipulations, and signal detection. Passive microfluidic devices are geometry-dependent, and their uses are rather limited. Active microfluidic devices include sensors or detectors that transduce chemical, biological, and physical changes into electrical or optical signals. Also, they are transduction devices that detect biological and chemical changes in biomedical applications, and they are highly versatile microfluidic tools for disease diagnosis and organ modeling. This review provides a comprehensive overview of the significant advances that have been made in the development of microfluidics devices. We will discuss the function of microfluidic devices as micromixers or as sorters of cells and substances (e.g., microfiltration, flow or displacement, and trapping). Microfluidic devices are fabricated using a range of techniques, including molding, etching, three-dimensional printing, and nanofabrication. Their broad utility lies in the detection of diagnostic biomarkers and organ-on-chip approaches that permit disease modeling in cancer, as well as uses in neurological, cardiovascular, hepatic, and pulmonary diseases. Biosensor applications allow for point-of-care testing, using assays based on enzymes, nanozymes, antibodies, or nucleic acids (DNA or RNA). An anticipated development in the field includes the optimization of techniques for the fabrication of microfluidic devices using biocompatible materials. These developments will increase biomedical versatility, reduce diagnostic costs, and accelerate diagnosis time of microfluidics technology.
摘要:
无源和有源微流体芯片都用于许多生物医学和化学应用中,以支持流体混合,粒子操作,和信号检测。被动式微流体装置是几何结构依赖的,它们的用途相当有限。有源微流控装置包括传感器或检测器,生物,和物理变化为电信号或光信号。此外,它们是检测生物医学应用中生物和化学变化的转导装置,它们是用于疾病诊断和器官建模的高度通用的微流控工具。这篇综述全面概述了微流体设备开发方面取得的重大进展。我们将讨论微流体设备作为微混合器或细胞和物质的分选器的功能(例如,微滤,流量或位移,和诱捕)。微流体设备是使用一系列技术制造的,包括成型,蚀刻,三维打印,和纳米加工。它们的广泛用途在于检测诊断生物标志物和允许癌症疾病建模的芯片上器官方法,以及在神经学中的用途,心血管,肝,和肺部疾病。生物传感器应用允许即时测试,使用基于酶的测定法,纳米酶,抗体,或核酸(DNA或RNA)。该领域的预期发展包括使用生物相容性材料制造微流体装置的技术的优化。这些发展将增加生物医学的多功能性,降低诊断成本,加快微流体技术的诊断时间。
公众号