关键词: ATP sulfurylase Gene expression Molecular docking Se hyperaccumulators Selenium metabolism

Mesh : Adenosine Triphosphate Amino Acids / metabolism Arabidopsis / metabolism Cardamine / metabolism Molecular Docking Simulation Selenic Acid Selenious Acid / metabolism Selenium / metabolism Sulfate Adenylyltransferase / chemistry genetics metabolism Sulfates / metabolism Sulfites / metabolism

来  源:   DOI:10.1186/s12870-022-03872-7   PDF(Pubmed)

Abstract:
BACKGROUND: ATP sulfurylase (ATPS) is a crucial enzyme for the selenate assimilation pathway in plants.
RESULTS: In this study, genome-wide and comparative analyses of ATPS in Cardamine hupingshanensis, including sequence and structural analyses, were performed. The expression of ChATPS gene family members in C. hupingshanensis under selenium (Se) stress was also investigated, and our results suggest that ChATPS1-2 play key roles in the response to Se stress. Nine ATPS genes were found from C. hupingshanensis, which share highly conserved sequences with ATPS from Arabidopsis thaliana. In addition, we performed molecular docking of ATP sulfurylase in complex with compounds ATP, selenate, selenite, sulfate, and sulfite. ChAPS3-1 was found to have stronger binding energies with all compounds tested. Among these complexes, amino acid residues Arg, Gly, Ser, Glu, and Asn were commonly present.
CONCLUSIONS: Our study reveals the molecular mechanism of C. hupingshanensis ATP sulfurylase interacting with selenate, which is essential for understanding selenium assimilation. This information will guide further studies on the function of the ChATPS gene family in the selenium stress response and lay the foundation for the selenium metabolic pathway in higher plants.
摘要:
背景:ATP硫酸化酶(ATPS)是植物中硒酸盐同化途径的关键酶。
结果:在这项研究中,山屏山豆蔻ATPS的全基因组和比较分析,包括序列和结构分析,被执行了。还研究了ChATPS基因家族成员在硒(Se)胁迫下的表达。我们的结果表明,ChATPS1-2在硒胁迫的反应中起关键作用。从湖屏山菜中发现了9个ATPS基因,与拟南芥的ATPS共享高度保守的序列。此外,我们进行了与化合物ATP复合物ATP硫酸化酶的分子对接,硒酸盐,亚硒酸盐,硫酸盐,还有亚硫酸盐.发现ChAPS3-1与所有测试的化合物具有更强的结合能。在这些配合物中,氨基酸残基Arg,Gly,Ser,Glu,和Asn通常存在。
结论:我们的研究揭示了水平山梭菌ATP硫酸化酶与硒酸盐相互作用的分子机制,这对于理解硒同化至关重要。这些信息将指导进一步研究ChATPS基因家族在硒胁迫反应中的功能,并为高等植物的硒代谢途径奠定基础。
公众号