关键词: Bacterial transport Bioenergetics Glutathione Metalloids Nanoparticles Oxyanion reduction Selenite Tellurite Bacterial transport Bioenergetics Glutathione Metalloids Nanoparticles Oxyanion reduction Selenite Tellurite

Mesh : Bacteria Selenious Acid Selenium Tellurium / chemistry Bacteria Selenious Acid Selenium Tellurium / chemistry

来  源:   DOI:10.1186/s40659-022-00378-2

Abstract:
This opinion review explores the microbiology of tellurite, TeO32- and selenite, SeO32- oxyanions, two similar Group 16 chalcogen elements, but with slightly different physicochemical properties that lead to intriguing biological differences. Selenium, Se, is a required trace element compared to tellurium, Te, which is not. Here, the challenges around understanding the uptake transport mechanisms of these anions, as reflected in the model organisms used by different groups, are described. This leads to a discussion around how these oxyanions are subsequently reduced to nanomaterials, which mechanistically, has controversies between ideas around the molecule chemistry, chemical reactions involving reduced glutathione and reactive oxygen species (ROS) production along with the bioenergetics at the membrane versus the cytoplasm. Of particular interest is the linkage of glutathione and thioredoxin chemistry from the cytoplasm through the membrane electron transport chain (ETC) system/quinones to the periplasm. Throughout the opinion review we identify open and unanswered questions about the microbial physiology under selenite and tellurite exposure. Thus, demonstrating how far we have come, yet the exciting research directions that are still possible. The review is written in a conversational manner from three long-term researchers in the field, through which to play homage to the late Professor Claudio Vásquez.
摘要:
这篇评论探讨了碲酸盐的微生物学,TeO32-和亚硒酸盐,SeO32-氧阴离子,两个类似的16族硫属元素,但物理化学性质略有不同,导致有趣的生物学差异。硒,Se,与碲相比是必需的微量元素,Te,这不是。这里,围绕理解这些阴离子的吸收运输机制的挑战,正如不同群体使用的模型生物所反映的那样,被描述。这导致了围绕这些含氧阴离子如何随后被还原成纳米材料的讨论,在机械上,围绕分子化学的想法之间存在争议,涉及还原型谷胱甘肽和活性氧(ROS)的产生以及膜与细胞质的生物能学的化学反应。特别感兴趣的是谷胱甘肽和硫氧还蛋白化学从细胞质通过膜电子传递链(ETC)系统/醌到周质的连接。在整个意见审查中,我们确定了有关亚硒酸盐和亚碲酸盐暴露下的微生物生理学的悬而未决的问题。因此,证明我们已经走了多远,然而令人兴奋的研究方向仍然是可能的。这篇评论是由该领域的三位长期研究人员以对话的方式撰写的,借此向已故的克劳迪奥·巴斯克斯教授致敬。
公众号