关键词: Akt FoxO1 Sox10 myelination oligodendrocyte differentiation

Mesh : Animals Apoptosis / physiology Brain / metabolism Cell Differentiation / physiology Female Forkhead Box Protein O1 / genetics metabolism Male Mice Mice, Knockout Oligodendroglia / cytology metabolism Phosphorylation Proto-Oncogene Proteins c-akt / genetics metabolism SOXE Transcription Factors / genetics metabolism Spinal Cord / metabolism White Matter / metabolism

来  源:   DOI:10.1523/JNEUROSCI.2432-20.2021   PDF(Pubmed)

Abstract:
Sox10 is a well known factor to control oligodendrocyte (OL) differentiation, and its expression is regulated by Olig2. As an important protein kinase, Akt has been implicated in diseases with white matter abnormalities. To study whether and how Akt may regulate OL development, we generated OL lineage cell-specific Akt1/Akt2/Akt3 triple conditional knock-out (Akt cTKO) mice. Both male and female mice were used. These mutants exhibit a complete loss of mature OLs and unchanged apoptotic cell death in the CNS. We show that the deletion of Akt three isoforms causes downregulation of Sox10 and decreased levels of phosphorylated FoxO1 in the brain. In vitro analysis reveals that the expression of FoxO1 with mutations on phosphorylation sites for Akt significantly represses the Sox10 promoter activity, suggesting that phosphorylation of FoxO1 by Akt is important for Sox10 expression. We further demonstrate that mutant FoxO1 without Akt phosphorylation epitopes is enriched in the Sox10 promoter. Together, this study identifies a novel FoxO1 phosphorylation-dependent mechanism for Sox10 expression and OL differentiation.SIGNIFICANCE STATEMENT Dysfunction of Akt is associated with white matter diseases including the agenesis of the corpus callosum. However, it remains unknown whether Akt plays an important role in oligodendrocyte differentiation. To address this question, we generated oligodendrocyte lineage cell-specific Akt1/Akt2/Akt3 triple-conditional knock-out mice. Akt mutants exhibit deficient white matter development, loss of mature oligodendrocytes, absence of myelination, and unchanged apoptotic cell death in the CNS. We demonstrate that deletion of Akt three isoforms leads to downregulation of Sox10, and that phosphorylation of FoxO1 by Akt is critical for Sox10 expression. Together, these findings reveal a novel mechanism to regulate Sox10 expression. This study may provide insights into molecular mechanisms for neurodevelopmental diseases caused by dysfunction of protein kinases.
摘要:
暂无翻译
公众号