关键词: Delayed neuronal apoptosis Dentate gyrus Extracellular signal-regulated kinase Neurogenesis Trimethyltin

Mesh : Acetophenones / administration & dosage pharmacology Animals Apoptosis / drug effects Behavior, Animal / drug effects Benzopyrans / administration & dosage pharmacology Dentate Gyrus / drug effects pathology Doublecortin Protein Extracellular Signal-Regulated MAP Kinases / genetics Male Memory Disorders / prevention & control Mice Mice, Inbred C57BL Neurogenesis / drug effects Neurons / drug effects pathology Neuroprotective Agents / administration & dosage pharmacology Seizures / prevention & control Time Factors Trimethyltin Compounds / toxicity Up-Regulation

来  源:   DOI:10.1016/j.lfs.2020.118494   PDF(Sci-hub)

Abstract:
OBJECTIVE: We here investigated the effect of late- and post-ictal treatment with rottlerin, a polyphenol compound isolated from Mallotus philippinensis, on delayed apoptotic neuronal death induced by trimethyltin (TMT) in mice.
METHODS: Male C57BL/6N mice received a single injection of TMT (2.4 mg/kg, i.p.), and mice were treated with rottlerin after a peak time (i.e., 2 d post-TMT) of convulsive behaviors and apoptotic cell death (5.0 mg/kg, i.p. at 3 and 4 d after TMT injection). Object location test and tail suspension test were performed at 5 d after TMT injection. In addition, changes in the expression of apoptotic and neurogenic markers in the dentate gyrus were examined.
RESULTS: Late- and post-ictal treatment with rottlerin suppressed delayed neuronal apoptosis in the dentate gyrus, and attenuated memory impairments (as evaluated by object location test) and depression-like behaviors (as evaluated by tail suspension test) at 5 days after TMT injection in mice. In addition, rottlerin enhanced the expression of Sox2 and DCX, and facilitated p-ERK expression in BrdU-incorporated cells in the dentate gyrus of TMT-treated mice. Rottlerin also increased p-Akt expression, and attenuated the increase in the ratio of pro-apoptotic factors/anti-apoptotic factors, and consequent cytosolic cytochrome c release and caspase-3 cleavage. Rottlerin-mediated action was significantly reversed by SL327, an ERK inhibitor.
CONCLUSIONS: Our results suggest that late- and post-ictal treatment with rottlerin attenuates TMT-induced delayed neuronal apoptosis in the dentate gyrus of mice via promotion of neurogenesis and inhibition of an on-going apoptotic process through up-regulation of p-ERK.
摘要:
暂无翻译
公众号