关键词: chemotaxis evolution of cooperation hitchhiking sticking

Mesh : Bacterial Adhesion Biological Evolution Chemotactic Factors Chemotaxis Models, Biological

来  源:   DOI:10.1111/jeb.13695   PDF(Sci-hub)

Abstract:
Bacteria typically reside in heterogeneous environments with various chemogradients where motile cells can gain an advantage over nonmotile cells. Since motility is energetically costly, cells must optimize their swimming speed and behaviour to maximize their fitness. Here, we investigate how cheating strategies might evolve where slow or nonmotile microbes exploit faster ones by sticking together and hitching a ride. Starting with physical and biological first principles, we computationally study the effects of sticking on the evolution of motility in a controlled chemostat environment. We find that stickiness allows for slow cheaters to dominate when chemoattractants are dispersed at intermediate distances. In this case, slow microbes exploit faster ones until they consume the population, leading to a tragedy of commons. For long races, slow microbes do gain an initial advantage from sticking, but eventually fall behind. Here, fast microbes are more likely to stick to other fast microbes and co-operate to increase their own population. We therefore conclude that whether the nature of the hitchhiking interaction is parasitic or mutualistic, depends on the chemoattractant distribution.
摘要:
暂无翻译
公众号