关键词: dyes lifetime nanothermometers proteins temperature

Mesh : Animals Anisotropy Biocompatible Materials Cattle Chickens Coloring Agents / chemistry Fluorescent Dyes / chemistry pharmacology Horses Light Luminescence Nanoparticles / chemistry Nanotechnology / methods Proteins / chemistry Temperature Thermometry / methods

来  源:   DOI:10.1002/jbio.201900044   PDF(Sci-hub)   PDF(Pubmed)

Abstract:
In the last decade, technological advances in chemistry and photonics have enabled real-time measurement of temperature at the nanoscale. Nanothermometers, probes specifically designed to relay these nanoscale temperature changes, provide a high degree of temperature, temporal, and spatial resolution and precision. Several different approaches have been proposed, including microthermocouples, luminescence and fluorescence polarization anisotropy-based nanothermometers. Anisotropy-based nanothermometers excel in terms of biocompatibility because they can be built from endogenous proteins conjugated to dyes, minimizing any system perturbation. Moreover, the resulting fluorescent proteins can retain their native structure and activity while performing the temperature measurement, allowing precise temperature recordings from the native environment or during an enzymatic reaction in any given experimental system. To facilitate the future use of these nanothermometers in research, here we present a theoretical model that predicts the optimal sensitivity for anisotropy-based thermometers starting with any protein or dye, based on protein size and dye fluorescence lifetime. Using this model, most proteins and dyes can be converted to nanothermometers. The utilization of these nanothermometers by a broad spectrum of disciplines within the scientific community will bring new knowledge and understanding that today remains unavailable with current techniques.
摘要:
在过去的十年里,化学和光子学的技术进步使得能够实时测量纳米级的温度。纳米温度计,专门设计用于传递这些纳米级温度变化的探头,提供高温度,temporal,空间分辨率和精度。已经提出了几种不同的方法,包括微热电偶,基于发光和荧光偏振各向异性的纳米温度计。基于各向异性的纳米温度计在生物相容性方面表现出色,因为它们可以由与染料共轭的内源性蛋白质构建而成,最小化任何系统扰动。此外,产生的荧光蛋白可以保留其天然结构和活性,同时进行温度测量,允许在任何给定的实验系统中从天然环境或酶促反应期间进行精确的温度记录。为了便于将来在研究中使用这些纳米温度计,在这里,我们提出了一个理论模型,可以预测从任何蛋白质或染料开始的基于各向异性的温度计的最佳灵敏度,基于蛋白质大小和染料荧光寿命。使用这个模型,大多数蛋白质和染料可以转化为纳米温度计。科学界广泛的学科使用这些纳米温度计将带来新的知识和理解,这些知识和理解今天仍然无法使用当前的技术。
公众号