关键词: Populus tomentosa Calvin–Benson–Bassham (CBB) cycle association genetics backward elimination random forest (BWERF) algorithm eQTN gene regulatory network (GRN) metabolite transcription factor

Mesh : Gene Regulatory Networks Photosynthesis Populus Promoter Regions, Genetic Transcription Factors

来  源:   DOI:10.1093/treephys/tpz025   PDF(Sci-hub)

Abstract:
Transcription factors (TFs) play crucial roles in the regulation of photosynthesis; elucidating these roles will facilitate our understanding of photosynthesis and thus accelerate its improvement for enhancing crop yield. Promoter analysis of 52 nuclear-encoded Populus tomentosa Carr. genes involved in the Calvin-Benson-Bassham (CBB) cycle revealed 706 motifs and 326 potentially interacting TFs. A backward elimination random forest (BWERF) algorithm reduced the number of TFs to 40, involved in a three-layer gene regulatory network (GRN) including 46 photosynthesis genes (bottom layer), 25 TFs (second layer) and 15 TFs (top layer). Phenotype-genotype association identified 248 single-nucleotide polymorphisms (SNPs) within 72 genes associated with 11 photosynthesis traits. Of the regulatory pairs identified by the BWERF (202 pairs), 77 TF-target combinations harbored SNPs associated with the same trait, supporting similar mechanisms of phenotype modulation. We used expression quantitative trait nucleotide (eQTN) analysis to identify causal SNPs affecting gene expression, identifying 1851 eQTN signals for 50 eGenes (genes whose expressions are regulated by eQTNs). Distribution patterns identified 14 eQTNs from seven TFs associated with eight expression levels of their downstream targets (defined in the GRN), whereas seven TF-target pairs were also identified by phenotype-genotype associations. To further validate the roles of TFs at the metabolic level, we selected 6764 SNPs from 55 genes (identified by GRN-association or GRN-eQTN pairs or both) for metabolic association, identifying variants within 10 TFs affecting metabolic processes underlying the CBB cycle. Our study provides new insights into the photosynthesis pathway in poplar and may facilitate understanding of processes underlying photosynthesis improvement.
摘要:
暂无翻译
公众号