关键词: bio-heat transfer choroidal blood perfusion choroidal pigmentation eye retinal laser surgery

Mesh : Choroid / anatomy & histology radiation effects Choroid Diseases Computer Simulation Hot Temperature Humans Lasers Models, Biological Retina / anatomy & histology radiation effects

来  源:   DOI:10.1002/cnm.1489

Abstract:
Retinopathy is a surgical process in which maladies of the human eye are treated by laser irradiation. A two-dimensional numerical model of the human eye geometry has been developed to investigate transient thermal effects due to laser radiation. In particular, the influence of choroidal pigmentation and that of choroidal blood convection-parameterized as a function of choroidal blood perfusion-are investigated in detail. The Pennes bio-heat transfer equation is invoked as the governing equation, and finite volume formulation is employed in the numerical method. For a 500-μm diameter spot size, laser power of 0.2 W, and 100% absorption of laser radiation in the retinal pigmented epithelium (RPE) region, the peak RPE temperature is observed to be 103 °C at 100 ms of the transient simulation of the laser surgical period. Because of the participation of pigmented layer of choroid in laser absorption, peak temperature is reduced to 94 °C after 100 ms of the laser surgery period. The effect of choroidal blood perfusion on retinal cooling is found to be negligible during transient simulation of retinopathy. A truncated three-dimensional model incorporating multiple laser irradiation of spots is also developed to observe the spatial effect of choroidal blood perfusion and choroidal pigmentation. For a circular array of seven uniformly distributed spots of identical diameter and laser power of 0.2 W, transient temperature evolution using simultaneous and sequential mode of laser surgical process is presented with analysis.
摘要:
暂无翻译
公众号