Mesh : Adenosine Triphosphatases Adenosine Triphosphate / metabolism Amino Acid Sequence Cell Line Consensus Sequence Escherichia coli / genetics Fungal Proteins / chemistry genetics metabolism Humans Hydrolysis Intracellular Membranes / metabolism Models, Molecular Molecular Sequence Data Mutagenesis Mutation, Missense Plasmids Saccharomyces cerevisiae / cytology genetics metabolism Saccharomyces cerevisiae Proteins Sequence Alignment Vesicular Transport Proteins

来  源:   DOI:10.1091/mbc.11.4.1345   PDF(Sci-hub)   PDF(Pubmed)

Abstract:
An evolutionarily ancient mechanism is used for intracellular membrane fusion events ranging from endoplasmic reticulum-Golgi traffic in yeast to synaptic vesicle exocytosis in the human brain. At the heart of this mechanism is the core complex of N-ethylmaleimide-sensitive fusion protein (NSF), soluble NSF attachment proteins (SNAPs), and SNAP receptors (SNAREs). Although these proteins are accepted as key players in vesicular traffic, their molecular mechanisms of action remain unclear. To illuminate important structure-function relationships in NSF, a screen for dominant negative mutants of yeast NSF (Sec18p) was undertaken. This involved random mutagenesis of a GAL1-regulated SEC18 yeast expression plasmid. Several dominant negative alleles were identified on the basis of galactose-inducible growth arrest, of which one, sec18-109, was characterized in detail. The sec18-109 phenotype (abnormal membrane trafficking through the biosynthetic pathway, accumulation of a membranous tubular network, growth suppression, increased cell density) is due to a single A-G substitution in SEC18 resulting in a missense mutation in Sec18p (Thr(394)-->Pro). Thr(394) is conserved in most AAA proteins and indeed forms part of the minimal AAA consensus sequence that serves as a signature of this large protein family. Analysis of recombinant Sec18-109p indicates that the mutation does not prevent hexamerization or interaction with yeast alpha-SNAP (Sec17p), but instead results in undetectable ATPase activity that cannot be stimulated by Sec17p. This suggests a role for the AAA protein consensus sequence in regulating ATP hydrolysis. Furthermore, this approach of screening for dominant negative mutants in yeast can be applied to other conserved proteins so as to highlight important functional domains in their mammalian counterparts.
摘要:
暂无翻译
公众号