Drp1

Drp1
  • 文章类型: Journal Article
    急性创伤性脑损伤(TBI)发展为慢性神经变性是没有保护性治疗的主要健康问题。这里,我们报告说,小鼠TBI后线粒体裂变急剧升高会引发17个月后持续的慢性神经变性,相当于人类几十年。我们表明,小鼠TBI后线粒体裂变的增加与线粒体裂变1蛋白(Fis1)的脑水平增加有关,并且人TBI中的脑Fis1也升高。药理学上阻止Fis1结合其线粒体伴侣,动力蛋白相关蛋白1(Drp1),TBI后2周恢复正常线粒体裂变/融合的平衡,并防止慢性受损的线粒体生物能学,氧化损伤,小胶质细胞活化和脂滴形成,血脑屏障恶化,神经变性,和认知障碍。延迟治疗至TBI后8个月不提供保护。因此,对线粒体裂变急剧升高的时间敏感性抑制可能是保护人类TBI患者免受慢性神经变性的策略。
    Progression of acute traumatic brain injury (TBI) into chronic neurodegeneration is a major health problem with no protective treatments. Here, we report that acutely elevated mitochondrial fission after TBI in mice triggers chronic neurodegeneration persisting 17 months later, equivalent to many human decades. We show that increased mitochondrial fission after mouse TBI is related to increased brain levels of mitochondrial fission 1 protein (Fis1) and that brain Fis1 is also elevated in human TBI. Pharmacologically preventing Fis1 from binding its mitochondrial partner, dynamin-related protein 1 (Drp1), for 2 weeks after TBI normalizes the balance of mitochondrial fission/fusion and prevents chronically impaired mitochondrial bioenergetics, oxidative damage, microglial activation and lipid droplet formation, blood-brain barrier deterioration, neurodegeneration, and cognitive impairment. Delaying treatment until 8 months after TBI offers no protection. Thus, time-sensitive inhibition of acutely elevated mitochondrial fission may represent a strategy to protect human TBI patients from chronic neurodegeneration.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    随着外显子组测序的出现,越来越多的儿童正在被鉴定为从头丢失的功能突变的基因1类(DNM1L)编码的大型GTP酶的线粒体裂变必不可少的基因,动力蛋白相关蛋白1(DRP1);这些突变导致严重的神经发育表型,比如发育迟缓,视神经萎缩,和癫痫性脑病。尽管已经确定线粒体裂变是发育中的皮质快速变化的代谢需求的重要前兆,目前尚不清楚DRP1不同结构域中鉴定出的突变是如何独特地破坏皮质发育和突触成熟的.我们利用在GTP酶或茎域中具有DRP1突变的诱导多能干细胞(iPSC)的力量来模拟体外皮质发育的早期阶段。突变型DRP1皮质神经元轴突运输的高分辨率延时成像揭示了严重过度灌注的线粒体结构的线粒体运动性的突变特异性变化。成熟过程中突变DRP1皮质神经元的转录谱也暗示了突触发育和钙调节基因表达中的突变依赖性改变。使用100个DIV(体外天数)突变DRP1皮质神经元的实时功能记录证实了钙动力学的破坏。使用超分辨率显微镜在突触前和突触后标记物共定位中的这些发现和缺陷,强烈建议DRP1突变神经元的线粒体形态改变导致突触发育和活动的致病性失调。
    With the advent of exome sequencing, a growing number of children are being identified with de novo loss of function mutations in the dynamin 1 like (DNM1L) gene encoding the large GTPase essential for mitochondrial fission, dynamin-related protein 1 (DRP1); these mutations result in severe neurodevelopmental phenotypes, such as developmental delay, optic atrophy, and epileptic encephalopathies. Though it is established that mitochondrial fission is an essential precursor to the rapidly changing metabolic needs of the developing cortex, it is not understood how identified mutations in different domains of DRP1 uniquely disrupt cortical development and synaptic maturation. We leveraged the power of induced pluripotent stem cells (iPSCs) harboring DRP1 mutations in either the GTPase or stalk domains to model early stages of cortical development in vitro. High-resolution time-lapse imaging of axonal transport in mutant DRP1 cortical neurons reveals mutation-specific changes in mitochondrial motility of severely hyperfused mitochondrial structures. Transcriptional profiling of mutant DRP1 cortical neurons during maturation also implicates mutation dependent alterations in synaptic development and calcium regulation gene expression. Disruptions in calcium dynamics were confirmed using live functional recordings of 100 DIV (days in vitro) mutant DRP1 cortical neurons. These findings and deficits in pre- and post-synaptic marker colocalization using super resolution microscopy, strongly suggest that altered mitochondrial morphology of DRP1 mutant neurons leads to pathogenic dysregulation of synaptic development and activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    谷胱甘肽过氧化物酶-1(GPx1)和cAMP/Ca2响应元件(CRE)结合蛋白(CREB)通过维持氧化还原稳态来调节神经元活力。由于GPx1和CREB相互调节,GPx1-CREB相互作用可能对氧化应激起神经保护作用,这在很大程度上是未知的。因此,我们研究了雄性大鼠海马中GPx1和CREB相互调节的潜在机制。在生理条件下,L-丁硫氨酸亚砜胺(BSO)诱导的氧化应激增加GPx1表达,细胞外信号调节激酶1/2(ERK1/2)活性和CA1神经元CREB丝氨酸(S)133磷酸化,但不是齿状颗粒细胞(DGC),通过GPx1siRNA减少,U0126或CREB击倒。GPx1敲低抑制BSO诱导的ERK1/2和CREB激活。CREB敲低也下降了BSO对ERK1/2激活的功效。BSO促进动力蛋白相关蛋白1(DRP1)介导的CA1神经元线粒体裂变,由GPx1敲除和U0126废除。CREB敲低使BSO诱导的DRP1上调而不影响DRP1S616磷酸化比率。癫痫持续状态(SE)后,GPx1在CA1神经元和DGC中表达降低。SE还降低了CA1神经元的CREB活性,但不是DGC。SE退化的CA1神经元,但不是DGC,伴随着线粒体伸长。这些后SE事件通过N-乙酰半胱氨酸(NAC,抗氧化剂),但因GPx1击倒而恶化。这些发现表明,短暂的GPx1-ERK1/2-CREB激活可能是通过维持适当的线粒体动力学保护海马神经元免受氧化应激的防御机制。
    Glutathione peroxidase-1 (GPx1) and cAMP/Ca2+ responsive element (CRE)-binding protein (CREB) regulate neuronal viability by maintaining the redox homeostasis. Since GPx1 and CREB reciprocally regulate each other, it is likely that GPx1-CREB interaction may play a neuroprotective role against oxidative stress, which are largely unknown. Thus, we investigated the underlying mechanisms of the reciprocal regulation between GPx1 and CREB in the male rat hippocampus. Under physiological condition, L-buthionine sulfoximine (BSO)-induced oxidative stress increased GPx1 expression, extracellular signal-regulated kinase 1/2 (ERK1/2) activity and CREB serine (S) 133 phosphorylation in CA1 neurons, but not dentate granule cells (DGC), which were diminished by GPx1 siRNA, U0126 or CREB knockdown. GPx1 knockdown inhibited ERK1/2 and CREB activations induced by BSO. CREB knockdown also decreased the efficacy of BSO on ERK1/2 activation. BSO facilitated dynamin-related protein 1 (DRP1)-mediated mitochondrial fission in CA1 neurons, which abrogated by GPx1 knockdown and U0126. CREB knockdown blunted BSO-induced DRP1 upregulation without affecting DRP1 S616 phosphorylation ratio. Following status epilepticus (SE), GPx1 expression was reduced in CA1 neurons and DGC. SE also decreased CREB activity CA1 neurons, but not DGC. SE degenerated CA1 neurons, but not DGC, accompanied by mitochondrial elongation. These post-SE events were ameliorated by N-acetylcysteine (NAC, an antioxidant), but deteriorated by GPx1 knockdown. These findings indicate that a transient GPx1-ERK1/2-CREB activation may be a defense mechanism to protect hippocampal neurons against oxidative stress via maintenance of proper mitochondrial dynamics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    异常的线粒体裂变/融合动力学经常与病理有关,包括癌症.我们表明,裂变蛋白Drp1(DNM1L)的选择性剪接变体有助于肿瘤细胞中线粒体裂变/融合调节的复杂性。相对于其他转录物,缺乏外显子16的Drp1选择性剪接变体的高肿瘤表达与卵巢癌患者的不良预后相关。缺乏外显子16导致Drp1定位于微管,并减少与线粒体裂变位点的关联,最终形成融合的线粒体网络,增强呼吸,新陈代谢的变化,并在体外和体内增强了促瘤表型。这些作用被设计为特异性靶向缺乏外显子16的内源性表达的转录物的siRNA抑制。此外,外显子16的缺失消除了响应促凋亡刺激的线粒体裂变,并导致对化学疗法的敏感性降低。这些数据强调了Drp1选择性剪接的病理生理学重要性,强调改变肿瘤细胞中Drp1剪接变体的相对表达的不同功能和后果,并强烈保证在未来针对Drp1的研究中考虑选择性剪接。
    Aberrant mitochondrial fission/fusion dynamics are frequently associated with pathologies, including cancer. We show that alternative splice variants of the fission protein Drp1 (DNM1L) contribute to the complexity of mitochondrial fission/fusion regulation in tumor cells. High tumor expression of the Drp1 alternative splice variant lacking exon 16 relative to other transcripts is associated with poor outcome in ovarian cancer patients. Lack of exon 16 results in Drp1 localization to microtubules and decreased association with mitochondrial fission sites, culminating in fused mitochondrial networks, enhanced respiration, changes in metabolism, and enhanced pro-tumorigenic phenotypes in vitro and in vivo. These effects are inhibited by siRNAs designed to specifically target the endogenously expressed transcript lacking exon 16. Moreover, lack of exon 16 abrogates mitochondrial fission in response to pro-apoptotic stimuli and leads to decreased sensitivity to chemotherapeutics. These data emphasize the pathophysiological importance of Drp1 alternative splicing, highlight the divergent functions and consequences of changing the relative expression of Drp1 splice variants in tumor cells, and strongly warrant consideration of alternative splicing in future studies focused on Drp1.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    血管性痴呆(VaD)是由慢性脑灌注不足(CCH)引起的痴呆的一种常见形式。然而,VaD的致病机制和相应的治疗策略尚不清楚.Sirtuin6(SIRT6)参与了各种生物过程,包括细胞代谢,DNA修复,氧化还原稳态,和衰老。然而,它在VaD中的功能相关性仍有待探索。在这项研究中,我们利用双侧颈总动脉狭窄(BCAS)VaD小鼠模型研究SIRT6的作用.我们检测到CCH后神经元SIRT6蛋白表达的显着降低。有趣的是,小鼠Sirt6的神经元特异性消融加剧了CCH后的神经元损伤和认知缺陷。相反,用SIRT6激动剂MDL-800治疗可有效减轻神经元丢失并促进神经恢复。机械上,SIRT6通过抑制CCH诱导的STAT5-PGAM5-Drp1信号级联来抑制线粒体过度裂变。此外,无症状颈动脉狭窄患者单核细胞SIRT6基因表达与认知结果相关,暗示人类受试者的翻译含义。我们的发现提供了SIRT6预防CCH引起的认知障碍的第一个证据,在机械上,这种保护是通过以STAT5-PGAM5-Drp1依赖性方式重塑线粒体动力学来实现的。
    Vascular dementia (VaD) is a prevalent form of dementia resulting from chronic cerebral hypoperfusion (CCH). However, the pathogenic mechanisms of VaD and corresponding therapeutic strategies are not well understood. Sirtuin 6 (SIRT6) has been implicated in various biological processes, including cellular metabolism, DNA repair, redox homeostasis, and aging. Nevertheless, its functional relevance in VaD remains unexplored. In this study, we utilized a bilateral common carotid artery stenosis (BCAS) mouse model of VaD to investigate the role of SIRT6. We detected a significant decrease in neuronal SIRT6 protein expression following CCH. Intriguingly, neuron-specific ablation of Sirt6 in mice exacerbated neuronal damage and cognitive deficits after CCH. Conversely, treatment with MDL-800, an agonist of SIRT6, effectively mitigated neuronal loss and facilitated neurological recovery. Mechanistically, SIRT6 inhibited excessive mitochondrial fission by suppressing the CCH-induced STAT5-PGAM5-Drp1 signaling cascade. Additionally, the gene expression of monocyte SIRT6 in patients with asymptomatic carotid stenosis showed a correlation with cognitive outcomes, suggesting translational implications in human subjects. Our findings provide the first evidence that SIRT6 prevents cognitive impairment induced by CCH, and mechanistically, this protection is achieved through the remodeling of mitochondrial dynamics in a STAT5-PGAM5-Drp1-dependent manner.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    六价铬[Cr(VI)]是一种具有多种毒性的高危害性重金属。职业研究表明,它在人类中的积累会导致肝脏损伤。然而,Cr(VI)诱导肝毒性的确切机制尚不清楚。在这项研究中,我们探讨了CTH/H2S/Drp1通路在Cr(VI)诱导的氧化应激中的作用,线粒体功能障碍,凋亡,和肝损伤。我们的数据显示Cr(VI)引发细胞凋亡,伴随着H2S的还原,活性氧(ROS)积累,AML12细胞和小鼠肝脏的线粒体功能障碍。此外,Cr(VI)还原的胱硫醚γ-裂解酶(CTH)和动力蛋白相关蛋白1(Drp1)S-硫酸化水平,和丝氨酸616处的Drp1磷酸化水平升高,这促进了Drp1线粒体易位和Drp1电压依赖性阴离子通道1(VDAC1)相互作用,最终导致线粒体依赖性细胞凋亡。升高的硫化氢(H2S)水平通过增加Drp1S-硫酸盐来消除丝氨酸616处的Drp1磷酸化,从而防止Cr(VI)诱导的Drp1-VDAC1相互作用和肝毒性。这些发现表明,Cr(VI)通过抑制CTH/H2S/Drp1途径诱导线粒体凋亡和肝毒性,靶向CTH/H2S途径或Drp1S-硫酸化可作为Cr(VI)诱导的肝损伤的潜在疗法。
    Hexavalent chromium [Cr(VI)] is a highly hazardous heavy metal with multiple toxic effects. Occupational studies indicate that its accumulation in humans can lead to liver damage. However, the exact mechanism underlying Cr(VI)-induced hepatotoxicity remains unknown. In this study, we explored the role of CTH/H2S/Drp1 pathway in Cr(VI)-induced oxidative stress, mitochondrial dysfunction, apoptosis, and liver injury. Our data showed that Cr(VI) triggered apoptosis, accompanied by H2S reduction, reactive oxygen species (ROS) accumulation, and mitochondrial dysfunction in both AML12 cells and mouse livers. Moreover, Cr(VI) reduced cystathionine γ-lyase (CTH) and dynamin related protein 1 (Drp1) S-sulfhydration levels, and elevated Drp1 phosphorylation levels at Serine 616, which promoted Drp1 mitochondrial translocation and Drp1-voltage-dependent anion channel 1 (VDAC1) interactions, ultimately leading to mitochondria-dependent apoptosis. Elevated hydrogen sulfide (H2S) levels eliminated Drp1 phosphorylation at Serine 616 by increasing Drp1 S-sulfhydration, thereby preventing Cr(VI)-induced Drp1-VDAC1 interaction and hepatotoxicity. These findings indicated that Cr(VI) induced mitochondrial apoptosis and hepatotoxicity by inhibiting CTH/H2S/Drp1 pathway and that targeting either CTH/H2S pathway or Drp1 S-sulfhydration could serve as a potential therapy for Cr(VI)-induced liver injury.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:受体相互作用蛋白激酶(RIPK)3是坏死性凋亡的重要分子,已使用各种肾损伤模型研究了其在肾纤维化中的作用。然而,RIPK3与白蛋白尿型糖尿病肾病(DKD)足细胞损伤的相关性和潜在机制尚不清楚.这里,我们研究了RIPK3在DKD肾小球损伤中的作用。
    方法:我们分析了活检证实的DKD患者和DKD动物模型的肾脏中RIPK3的表达水平。此外,为了证实循环RIPK3的临床意义,通过ELISA从2型糖尿病患者的前瞻性观察队列中获得的血浆中测量RIPK3,和估计的肾小球滤过率(eGFR)和尿白蛋白-肌酐比值(UACR),它们是肾功能的指标,在观察期间进行了随访。探讨RIPK3在DKD肾小球损伤中的作用。我们在Ripk3基因敲除和野生型小鼠中使用高脂饮食诱导了DKD模型。为了评估DKD中的线粒体功能障碍和蛋白尿是否采用Ripk3依赖性途径,我们对高糖或过表达RIPK3的肾皮质和永生化足细胞进行了单细胞RNA测序.
    结果:RIPK3在糖尿病肾小球足细胞中的表达增加,蛋白尿增加,足细胞数量减少。蛋白尿型糖尿病患者的血浆RIPK3水平明显高于非糖尿病对照组(p=0.002)和非蛋白尿型糖尿病患者(p=0.046)。血浆RIPK3最高三元组的参与者肾脏进展(危险比[HR]2.29[1.05-4.98])和慢性肾病(HR4.08[1.10-15.13])的发生率较高。Ripk3敲除改善蛋白尿,足细胞丢失,DKD小鼠肾脏超微结构。线粒体碎片化增加,上调线粒体裂变相关蛋白,如磷酸甘油酸变位酶家族成员5(PGAM5)和动力蛋白相关蛋白1(Drp1),Ripk3敲除DKD小鼠足细胞中线粒体ROS降低。在培养的足细胞中,RIPK3抑制通过减少p-混合谱系激酶结构域样蛋白(MLKL)减弱线粒体裂变和线粒体功能障碍,PGAM5和p-Drp1S616以及Drp1的线粒体易位。
    结论:研究表明RIPK3反映了DKD肾功能的恶化。此外,RIPK3通过MLKL通过PGAM5-Drp1信号调节线粒体裂变诱导糖尿病足细胞病。抑制RIPK3可能是治疗DKD的有希望的治疗选择。
    BACKGROUND: Receptor-interacting protein kinase (RIPK)3 is an essential molecule for necroptosis and its role in kidney fibrosis has been investigated using various kidney injury models. However, the relevance and the underlying mechanisms of RIPK3 to podocyte injury in albuminuric diabetic kidney disease (DKD) remain unclear. Here, we investigated the role of RIPK3 in glomerular injury of DKD.
    METHODS: We analyzed RIPK3 expression levels in the kidneys of patients with biopsy-proven DKD and animal models of DKD. Additionally, to confirm the clinical significance of circulating RIPK3, RIPK3 was measured by ELISA in plasma obtained from a prospective observational cohort of patients with type 2 diabetes, and estimated glomerular filtration rate (eGFR) and urine albumin-to-creatinine ratio (UACR), which are indicators of renal function, were followed up during the observation period. To investigate the role of RIPK3 in glomerular damage in DKD, we induced a DKD model using a high-fat diet in Ripk3 knockout and wild-type mice. To assess whether mitochondrial dysfunction and albuminuria in DKD take a Ripk3-dependent pathway, we used single-cell RNA sequencing of kidney cortex and immortalized podocytes treated with high glucose or overexpressing RIPK3.
    RESULTS: RIPK3 expression was increased in podocytes of diabetic glomeruli with increased albuminuria and decreased podocyte numbers. Plasma RIPK3 levels were significantly elevated in albuminuric diabetic patients than in non-diabetic controls (p = 0.002) and non-albuminuric diabetic patients (p = 0.046). The participants in the highest tertile of plasma RIPK3 had a higher incidence of renal progression (hazard ratio [HR] 2.29 [1.05-4.98]) and incident chronic kidney disease (HR 4.08 [1.10-15.13]). Ripk3 knockout improved albuminuria, podocyte loss, and renal ultrastructure in DKD mice. Increased mitochondrial fragmentation, upregulated mitochondrial fission-related proteins such as phosphoglycerate mutase family member 5 (PGAM5) and dynamin-related protein 1 (Drp1), and mitochondrial ROS were decreased in podocytes of Ripk3 knockout DKD mice. In cultured podocytes, RIPK3 inhibition attenuated mitochondrial fission and mitochondrial dysfunction by decreasing p-mixed lineage kinase domain-like protein (MLKL), PGAM5, and p-Drp1 S616 and mitochondrial translocation of Drp1.
    CONCLUSIONS: The study demonstrates that RIPK3 reflects deterioration of renal function of DKD. In addition, RIPK3 induces diabetic podocytopathy by regulating mitochondrial fission via PGAM5-Drp1 signaling through MLKL. Inhibition of RIPK3 might be a promising therapeutic option for treating DKD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    雷公藤多,从植物雷公藤中提取的生物活性分子,具有抗炎,抗肥胖和抗肿瘤特性。尽管它在改善银屑病小鼠的红斑和鳞屑方面有功效,雷公藤红素在特应性皮炎(AD)中的具体治疗机制尚不清楚。本研究旨在利用TNF-α刺激的HaCaT细胞和DNCB诱导的Balb/c小鼠作为体外和体内AD模型,研究雷公藤红素在AD中的作用和机制。分别。发现雷公藤多酚能抑制表皮厚度的增加,减少脾脏和淋巴结的重量,减轻炎症细胞浸润和肥大细胞脱颗粒,减少胸腺基质淋巴细胞生成素(TSLP)以及各种炎症因子(IL-4,IL-13,TNF-α,IL-5、IL-31、IL-33、IgE、TSLP,IL-17,IL-23,IL-1β,AD小鼠中的CCL11和CCL17)。此外,雷公藤红素在Thr567抑制Ezrin磷酸化,恢复线粒体网络结构,促进Drp1转位到细胞质和减少TNF-α诱导的细胞活性氧(ROS),线粒体ROS(mtROS)和线粒体膜电位(MMP)的产生。有趣的是,Mdivi-1(线粒体裂变抑制剂)和Ezrin特异性siRNA降低了炎症因子水平并恢复了线粒体网状结构,以及ROS,MTROS和MMP生产。免疫共沉淀显示Ezrin与Drp1相互作用。敲除Ezrin减少线粒体裂变蛋白Drp1磷酸化和Fis1表达,同时增加融合蛋白Mfn1和Mfn2的表达。证实了Ezrin对线粒体裂变和融合的调控。总的来说,雷公藤红素可能通过调节Ezrin介导的线粒体裂变和融合来缓解AD,可能成为缓解AD的新型治疗试剂。
    Celastrol, a bioactive molecule extracted from the plant Tripterygium wilfordii Hook F., possesses anti-inflammatory, anti-obesity and anti-tumour properties. Despite its efficacy in improving erythema and scaling in psoriatic mice, the specific therapeutic mechanism of celastrol in atopic dermatitis (AD) remains unknown. This study aims to examine the role and mechanism of celastrol in AD using TNF-α-stimulated HaCaT cells and DNCB-induced Balb/c mice as in vitro and in vivo AD models, respectively. Celastrol was found to inhibit the increased epidermal thickness, reduce spleen and lymph node weights, attenuate inflammatory cell infiltration and mast cell degranulation and decrease thymic stromal lymphopoietin (TSLP) as well as various inflammatory factors (IL-4, IL-13, TNF-α, IL-5, IL-31, IL-33, IgE, TSLP, IL-17, IL-23, IL-1β, CCL11 and CCL17) in AD mice. Additionally, celastrol inhibited Ezrin phosphorylation at Thr567, restored mitochondrial network structure, promoted translocation of Drp1 to the cytoplasm and reduced TNF-α-induced cellular reactive oxygen species (ROS), mitochondrial ROS (mtROS) and mitochondrial membrane potential (MMP) production. Interestingly, Mdivi-1 (a mitochondrial fission inhibitor) and Ezrin-specific siRNAs lowered inflammatory factor levels and restored mitochondrial reticular formation, as well as ROS, mtROS and MMP production. Co-immunoprecipitation revealed that Ezrin interacted with Drp1. Knocking down Ezrin reduced mitochondrial fission protein Drp1 phosphorylation and Fis1 expression while increasing the expression of fusion proteins Mfn1 and Mfn2. The regulation of mitochondrial fission and fusion by Ezrin was confirmed. Overall, celastrol may alleviate AD by regulating Ezrin-mediated mitochondrial fission and fusion, which may become a novel therapeutic reagent for alleviating AD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体网络的动态性质受线粒体裂变和融合调节,允许线粒体重新组织以适应细胞不断变化的需求。随着生物年龄的增长,线粒体裂变和融合变得失调,线粒体网络变得越来越支离破碎。线粒体动力学的调节已被证明会影响真菌的寿命,酵母,果蝇和秀丽隐杆线虫。线粒体裂变基因drp-1的破坏急剧增加了daf-2胰岛素/IGF-1信号(IIS)突变体的已经长的寿命。在这项工作中,我们确定了drp-1破坏以延长daf-2寿命所需的条件,并探索了相关的分子机制。我们发现在开发过程中击倒drp-1足以延长daf-2的寿命,而神经元中drp-1的组织特异性敲除,肠道或肌肉未能增加daf-2的寿命。与线粒体裂变有关的其他基因的破坏也增加了daf-2的寿命,就像用减少线粒体片段化的RNA干扰克隆处理一样。在探索潜在的机制时,我们发现drp-1的缺失增加了对慢性应激的抵抗力。此外,我们发现drp-1的破坏增加了daf-2蠕虫的线粒体和过氧化物酶体连接,增加氧化磷酸化和ATP水平,daf-2蠕虫的线粒体自噬增加,但不影响他们的ROS水平,食物消耗或线粒体膜电位。通过靶向pink-1的RNA干扰破坏线粒体自噬会降低daf-2的寿命;drp-1蠕虫表明线粒体自噬的增加有助于延长寿命。总的来说,这项工作定义了drp-1破坏增加daf-2寿命的条件,并确定了daf-2的多种变化;drp-1突变体可能有助于其寿命延长。
    The dynamic nature of the mitochondrial network is regulated by mitochondrial fission and fusion, allowing for re-organization of mitochondria to adapt to the cell\'s ever-changing needs. As organisms age, mitochondrial fission and fusion become dysregulated and mitochondrial networks become increasingly fragmented. Modulation of mitochondrial dynamics has been shown to affect longevity in fungi, yeast, Drosophila and C. elegans. Disruption of the mitochondrial fission gene drp-1 drastically increases the already long lifespan of daf-2 insulin/IGF-1 signaling (IIS) mutants. In this work, we determined the conditions required for drp-1 disruption to extend daf-2 longevity and explored the molecular mechanisms involved. We found that knockdown of drp-1 during development is sufficient to extend daf-2 lifespan, while tissue-specific knockdown of drp-1 in neurons, intestine or muscle failed to increase daf-2 longevity. Disruption of other genes involved in mitochondrial fission also increased daf-2 lifespan as did treatment with RNA interference clones that decrease mitochondrial fragmentation. In exploring potential mechanisms involved, we found that deletion of drp-1 increases resistance to chronic stresses. In addition, we found that disruption of drp-1 increased mitochondrial and peroxisomal connectedness in daf-2 worms, increased oxidative phosphorylation and ATP levels, and increased mitophagy in daf-2 worms, but did not affect their ROS levels, food consumption or mitochondrial membrane potential. Disruption of mitophagy through RNA interference targeting pink-1 decreased the lifespan of daf-2;drp-1 worms suggesting that increased mitophagy contributes to their extended lifespan. Overall, this work defined the conditions under which drp-1 disruption increases daf-2 lifespan and has identified multiple changes in daf-2;drp-1 mutants that may contribute to their lifespan extension.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    三阴性乳腺癌(TNBC)无法治愈,易于广泛转移。因此,迫切需要确定TNBC进展的关键靶标。我们先前的研究表明,同位素烯酮苷(ITSN)通过靶向TGFβR1来减少TNBC转移。目前ITSN作为一种有效的化学探针,用于进一步发现TNBC在TGFβR1下游转移的关键分子。结果表明,GOT2是Smad2/3的下游基因,ITSN通过直接结合TGF-β-Smad2/3信号通路的激活来降低GOT2的表达。GOT2在TNBC中高表达,其敲除减少了TNBC的转移。然而,GOT2过表达在体外和体内均逆转了ITSN对TNBC转移的抑制作用。GOT2与MYH9相互作用并阻碍其与E3泛素连接酶STUB1的结合,从而减少MYH9泛素化和降解。此外,GOT2还增强了MYH9向线粒体的易位,从而诱导DRP1磷酸化,从而促进TNBC细胞的线粒体分裂和片状足形成。ITSN介导的线粒体裂变和片状足形成的抑制与GOT2表达降低有关。总之,ITSN通过减少GOT2表达来增强MYH9蛋白降解,从而阻止了MYH9调节的线粒体裂变和TNBC细胞中的片状足形成,从而有助于其抑制TNBC转移。
    Triple-negative breast cancer (TNBC) is incurable and prone to widespread metastasis. Therefore, identification of key targets for TNBC progression is urgently needed. Our previous study revealed that isotoosendanin (ITSN) reduced TNBC metastasis by targeting TGFβR1. ITSN is currently used as an effective chemical probe to further discover the key molecules involved in TNBC metastasis downstream of TGFβR1. The results showed that GOT2 was the gene downstream of Smad2/3 and that ITSN decreased GOT2 expression by abrogating the activation of the TGF-β-Smad2/3 signaling pathway through directly binding to TGFβR1. GOT2 was highly expressed in TNBC, and its knockdown decreased TNBC metastasis. However, GOT2 overexpression reversed the inhibitory effect of ITSN on TNBC metastasis both in vitro and in vivo. GOT2 interacted with MYH9 and hindered its binding to the E3 ubiquitin ligase STUB1, thereby reducing MYH9 ubiquitination and degradation. Moreover, GOT2 also enhanced the translocation of MYH9 to mitochondria and thus induced DRP1 phosphorylation, thereby promoting mitochondrial fission and lamellipodia formation in TNBC cells. ITSN-mediated inhibition of mitochondrial fission and lamellipodia formation was associated with reduced GOT2 expression. In conclusion, ITSN prevented MYH9-regulated mitochondrial fission and lamellipodia formation in TNBC cells by enhancing MYH9 protein degradation through a reduction in GOT2 expression, thus contributing to its inhibition of TNBC metastasis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号