Auxin

生长素
  • 文章类型: Journal Article
    Hydathodes是在维管植物的叶缘上发现的小器官,通过称为内脏的过程释放多余的木质部汁液。虽然以前的研究已经暗示了在代谢物运输或生长素代谢中的其他功能,实验支持是有限的。我们进行了全面的转录组学,成熟拟南芥的代谢组学和生理分析。这项研究确定了1460个基因在棘突中差异表达,与叶片相比,表明大多数与生长素代谢相关的基因表达较高,代谢物运输,应激反应,DNA,RNA或microRNA过程,植物细胞壁动态和蜡代谢。值得注意的是,我们观察到编码生长素相关转录调节因子的基因的差异表达,生物合成过程,运输和液泡储存由游离生长素和共轭生长素在棘突中的测量积累支持。我们还表明,52个木质部代谢物的总含量的78%从棘突中去除。我们证明了NRT2.1和PHT1;4个转运蛋白捕获内脏液中的硝酸盐和无机磷酸盐,分别,从而限制了在此过程中营养的损失。我们的转录组学和代谢组学分析揭示了具有特定生理和生物学特性的器官。
    Hydathodes are small organs found on the leaf margins of vascular plants which release excess xylem sap through a process called guttation. While previous studies have hinted at additional functions of hydathode in metabolite transport or auxin metabolism, experimental support is limited. We conducted comprehensive transcriptomic, metabolomic and physiological analyses of mature Arabidopsis hydathodes. This study identified 1460 genes differentially expressed in hydathodes compared to leaf blades, indicating higher expression of most genes associated with auxin metabolism, metabolite transport, stress response, DNA, RNA or microRNA processes, plant cell wall dynamics and wax metabolism. Notably, we observed differential expression of genes encoding auxin-related transcriptional regulators, biosynthetic processes, transport and vacuolar storage supported by the measured accumulation of free and conjugated auxin in hydathodes. We also showed that 78% of the total content of 52 xylem metabolites was removed from guttation fluid at hydathodes. We demonstrate that NRT2.1 and PHT1;4 transporters capture nitrate and inorganic phosphate in guttation fluid, respectively, thus limiting the loss of nutrients during this process. Our transcriptomic and metabolomic analyses unveil an organ with its specific physiological and biological identity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞生长素(吲哚-3-乙酸,IAA)水平受IAA生物合成和失活的协调调节。IAA是通过两种酶的顺序反应合成的,TAA1和YUCCA,在线性吲哚-3-丙酮酸(IPA)途径中。TAA1将色氨酸转化为IPA,YUCCA催化IPA氧化脱羧为IAA。先前报道拟南芥UDP-糖基转移酶UGT76F2(At3g55710)催化IPA的糖基化并因此调节IAA水平。我们仔细分析了UGT76F2及其紧密同源物UGT76F1(At3g55700)在IAA稳态中的生理作用。我们产生了两个独立的ugt76f1ugt76f2双空拟南芥突变体(ugt76f1f2),具有2.7kb的缺失,以及通过CRISPR/Cas9基因编辑技术实现的两个独立的ugt76f2单个空突变体。令人惊讶的是,在我们的实验室条件下,这些无效突变体与野生型幼苗表现出无法区分的表型。我们的结果表明UGT76F1和UGT76F2在通过IPA糖基化调节IAA生物合成中不发挥重要作用。
    Cellular auxin (indole-3-acetic acid, IAA) levels are coordinately regulated by IAA biosynthesis and inactivation. IAA is synthesized through sequential reactions by two enzymes, TAA1 and YUCCA, in a linear indole-3-pyruvic acid (IPA) pathway. TAA1 converts tryptophan to IPA, and YUCCA catalyzes the oxidative decarboxylation of IPA into IAA. Arabidopsis UDP-glycosyltransferase UGT76F2 (At3g55710) was previously reported to catalyze the glycosylation of IPA and consequently modulate IAA levels. We carefully analyzed the physiological roles of UGT76F2 and its close homolog UGT76F1 (At3g55700) in IAA homeostasis. We generated two independent ugt76f1 ugt76f2 double null Arabidopsis mutants (ugt76f1f2) with a 2.7 kb deletion, along with two independent ugt76f2 single null mutants by CRISPR/Cas9 gene editing technology. Surprisingly, these null mutants exhibited indistinguishable phenotypes from the wild-type seedlings under our laboratory conditions. Our results indicate that UGT76F1 and UGT76F2 do not play important roles in regulating IAA biosynthesis via the IPA glycosylation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    为了以生态友好的方式解决植物中的盐度胁迫,这项研究调查了从盐碱农业土壤中分离出的耐盐性细菌对黄瓜生长的潜在影响(Cucumissativus,cv.皇家)幼苗。温室因子实验是基于完全随机设计(CRD)进行的,具有两个因素,四个级别的盐度和五个细菌处理,重复三次(n=3)。最初,筛选了50个细菌分离株的盐度和耐旱性,磷酸盐溶解活性,随着生长素的生产,铁载体和氰化氢。分离株K4,K14,K15和C8在体外表现出对盐度和干旱胁迫的最高抗性。分离物C8和K15表现出最高的生长素生产能力,分别产生2.95和2.87µgmL-1,并表现出显著的铁载体生产能力(分别为14%和11%)。此外,分离株C8和K14表现出更高的磷酸盐溶解活性,分别为184.64和122.11µgmL-1。统计分析显示,所选的四种有效分离株显着增强了在盐度胁迫条件下生长六周的黄瓜植物的所有生长参数。植物高度增加了41%,鲜重和干重分别减少35%和7%,分别,叶面积指数下降85%。最有效的隔离,C8基于16SrDNA扩增子测序被鉴定为枯草芽孢杆菌。这项研究表明,用耐盐细菌分离株接种黄瓜幼苗,如C8(枯草芽孢杆菌),具有丰富的植物生长促进特性,通过增强植物生长参数可显着减轻盐度胁迫。这些发现表明了一种有希望的生态友好策略,可以提高盐碱农业环境中的作物生产率。
    To address salinity stress in plants in an eco-friendly manner, this study investigated the potential effects of salinity-resistant bacteria isolated from saline agricultural soils on the growth of cucumber (Cucumis sativus, cv. Royal) seedlings. A greenhouse factorial experiment was conducted based on a completely randomized design (CRD) with two factors, salinity at four levels and five bacterial treatments, with three replications (n = 3). Initially, fifty bacterial isolates were screened for their salinity and drought tolerance, phosphate solubilization activity, along with production of auxin, siderophore and hydrogen cyanide. Isolates K4, K14, K15, and C8 exhibited the highest resistance to salinity and drought stresses in vitro. Isolates C8 and K15 demonstrated the highest auxin production capacity, generating 2.95 and 2.87 µg mL- 1, respectively, and also exhibited significant siderophore production capacities (by 14% and 11%). Additionally, isolates C8 and K14 displayed greater phosphate solubilization activities, by 184.64 and 122.11 µg mL- 1, respectively. The statistical analysis revealed that the selected four potent isolates significantly enhanced all growth parameters of cucumber plants grown under salinity stress conditions for six weeks. Plant height increased by 41%, fresh and dry weights by 35% and 7%, respectively, and the leaf area index by 85%. The most effective isolate, C8, was identified as Bacillus subtilis based on the 16 S rDNA amplicon sequencing. This study demonstrated that inoculating cucumber seedlings with halotolerant bacterial isolates, such as C8 (Bacillus subtilis), possessing substantial plant growth-promoting properties significantly alleviated salinity stress by enhancing plant growth parameters. These findings suggest a promising eco-friendly strategy for improving crop productivity in saline agricultural environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    甘蔗作为生物燃料原料拥有全球前景,需要深入了解影响生物量产量的因素。这项研究揭示了控制甘蔗生长发育的植物激素的复杂动态。F2基因渗入杂种的转录组分析,源自甘蔗“LAPurple”和野生甘蔗“MOL5829”的杂交,进行了,利用最近测序的“LAPurple”等位基因特异性基因组作为参考。共有8059个差异表达基因被归类为基因模型(21.5%),等位基因(68%),旁系物(10%),和串联重复基因(0.14%)。KEGG分析强调了生长素(IAA)的富集,茉莉酸(JA),和脱落酸(ABA)途径,揭示激素抑制基因家族的调节作用(Aux/IAA,PP2C,和JAZ)。信号通路表明,AUX/IAA和PP2C的下调和JAZ抑制基因在高生物量分离体中的上调是影响下游生长调节基因的关键参与者。内源性激素水平显示高生物量中IAA和ABA的浓度较高,与较低的JA水平形成对比。加权共表达网络分析表明,在高生物量基因型中,激素相关关键基因与细胞壁结构基因之间具有很强的连通性。表达分析证实了高生物量中参与结构碳水化合物合成的基因的上调以及花序和衰老相关基因的下调,这表明了一个延长的营养生长阶段。这项研究强调了累积基因表达的重要性,包括基因模型,显性等位基因,旁系物,和串联重复的基因以及不同激素的激活子和阻遏物(IAA,JA,和ABA)信号通路是对比生物量F2分离子中激素串扰的点,可应用于工程化高生物量获取品种。
    Sugarcane holds global promise as a biofuel feedstock, necessitating a deep understanding of factors that influence biomass yield. This study unravels the intricate dynamics of plant hormones that govern growth and development in sugarcane. Transcriptome analysis of F2 introgression hybrids, derived from the cross of Saccharum officinarum \"LA Purple\" and wild Saccharum robustum \"MOL5829\", was conducted, utilizing the recently sequenced allele-specific genome of \"LA Purple\" as a reference. A total of 8059 differentially expressed genes were categorized into gene models (21.5%), alleles (68%), paralogs (10%), and tandemly duplicated genes (0.14%). KEGG analysis highlighted enrichment in auxin (IAA), jasmonic acid (JA), and abscisic acid (ABA) pathways, revealing regulatory roles of hormone repressor gene families (Aux/IAA, PP2C, and JAZ). Signaling pathways indicated that downregulation of AUX/IAA and PP2C and upregulation of JAZ repressor genes in high biomass segregants act as key players in influencing downstream growth regulatory genes. Endogenous hormone levels revealed higher concentrations of IAA and ABA in high biomass, which contrasted with lower levels of JA. Weighted co-expression network analysis demonstrated strong connectivity between hormone-related key genes and cell wall structural genes in high biomass genotypes. Expression analysis confirmed the upregulation of genes involved in the synthesis of structural carbohydrates and the downregulation of inflorescence and senescence-related genes in high biomass, which suggested an extended vegetative growth phase. The study underscores the importance of cumulative gene expression, including gene models, dominant alleles, paralogs, and tandemly duplicated genes and activators and repressors of disparate hormone (IAA, JA, and ABA) signaling pathways are the points of hormone crosstalk in contrasting biomass F2 segregants and could be applied for engineering high biomass acquiring varieties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生长素是调节生长的关键信号分子,新陈代谢,以及各种生物的行为,最值得注意的是植物,还有细菌,真菌,和动物。许多微生物合成和感知生长素,主要是吲哚-3-乙酸(IAA,在本文中称为生长素),最普遍的天然生长素,这影响了它们在植物和动物中定殖的能力。了解真菌中的生长素生物合成和信号传导可能使我们能够更好地控制从农业土壤到人类肠道的王国间关系和微生物群。尽管有这种重要性,尚未在真菌中设计具有高空间和时间分辨率的用于测量生长素的生物工具。在这项研究中,我们展示了一套基因编码的,比率法,为酿酒酵母模型设计的基于蛋白质的生长素生物传感器。受植物生长素信号的启发,这些生物传感器的比率特性通过最大程度地减少克隆和生长阶段的变化来提高生长素浓度测量的精度。我们使用这些生物传感器来测量酵母培养物中不同生长条件和阶段的生长素产量,并校准了它们对生理相关生长素水平的反应。未来的工作将旨在改善这些生物传感器的倍数变化和可逆性。这些基因编码的生长素生物传感器是研究酿酒酵母和潜在的其他酵母和真菌中生长素生物合成和信号传导的有价值的工具,也将推进植物生长素感知机制的定量功能研究。他们是从那里建造的。
    Auxins are crucial signaling molecules that regulate the growth, metabolism, and behavior of various organisms, most notably plants but also bacteria, fungi, and animals. Many microbes synthesize and perceive auxins, primarily indole-3-acetic acid (IAA, referred to as auxin herein), the most prevalent natural auxin, which influences their ability to colonize plants and animals. Understanding auxin biosynthesis and signaling in fungi may allow us to better control interkingdom relationships and microbiomes from agricultural soils to the human gut. Despite this importance, a biological tool for measuring auxin with high spatial and temporal resolution has not been engineered in fungi. In this study, we present a suite of genetically encoded, ratiometric, protein-based auxin biosensors designed for the model yeast Saccharomyces cerevisiae. Inspired by auxin signaling in plants, the ratiometric nature of these biosensors enhances the precision of auxin concentration measurements by minimizing clonal and growth phase variation. We used these biosensors to measure auxin production across diverse growth conditions and phases in yeast cultures and calibrated their responses to physiologically relevant levels of auxin. Future work will aim to improve the fold change and reversibility of these biosensors. These genetically encoded auxin biosensors are valuable tools for investigating auxin biosynthesis and signaling in S. cerevisiae and potentially other yeast and fungi and will also advance quantitative functional studies of the plant auxin perception machinery, from which they are built.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物需要磷酸盐(Pi)才能正常生长和发育,但通常会在土壤中缺乏这种重要的养分。Pi饥饿引发膜脂质重塑,以利用植物中结合膜磷脂的Pi。在这个过程中,磷脂被不含Pi的半乳糖脂(MGDG,DGDG)和硫脂。建议半乳糖脂比(MGDG:DGDG)影响茉莉酸(JA)的生物合成。然而,MGDG:DGDG比率如何,JA级别,在水稻(Oryzasativa)缺乏Pi的情况下,根的生长是协调的仍然未知。这里,我们表征了DGDG合酶1(OsDGD1)通过维持JA生物合成的代谢通量在调节根发育中的作用。我们表明OsDGD1在低Pi下具有响应性,并且在磷酸盐饥饿响应2(OsPHR2)的直接控制下,低Pi适应的主调节器。Further,与野生型(WT)相比,OsDGD1敲除(KO)系显示出明显的表型差异,包括根长和生物量的显著减少,导致Pi摄取减少。Further,脂质组分析显示KO系中DGDG水平降低,导致膜重塑减少,从而影响P的利用效率。我们还观察到KO系中MGDG:DGDG比率的增加,增强了内源性JA水平和信号传导。KO植物中JA的这种不平衡导致了生长素水平的变化,引起严重的根系生长抑制。这些发现表明OsDGD1在Pi缺乏期间维持JA的最佳水平以有利于根生长方面的关键作用。除了作为信号分子和结构成分,我们的研究扩大了脂质作为植物激素生物合成代谢通量控制剂的作用.
    Plants require phosphate (Pi) for proper growth and development but often face scarcity of this vital nutrient in the soil. Pi-starvation triggers membrane lipid remodeling to utilize the membrane phospholipid-bound Pi in plants. In this process, phospholipids are replaced by non-Pi-containing galactolipids (MGDG, DGDG) and sulfolipids. The galactolipids ratio (MGDG:DGDG) is suggested to influence jasmonic acid (JA) biosynthesis. However, how the MGDG:DGDG ratio, JA levels, and root growth are coordinated under Pi deficiency in rice (Oryza sativa) remains unknown. Here, we characterized DGDG synthase 1 (OsDGD1) for its role in regulating root development by maintaining metabolic flux for JA biosynthesis. We showed that OsDGD1 is responsive under low Pi and is under the direct control of Phosphate Starvation Response 2 (OsPHR2), the master regulator of low Pi adaptations. Further, OsDGD1 knockout (KO) lines showed marked phenotypic differences compared to the wild type (WT), including a significant reduction in root length and biomass, leading to reduced Pi uptake. Further, lipidome analyses revealed reduced DGDG levels in the KO line, leading to reduced membrane remodeling, thus affecting P utilization efficiency. We also observed an increase in the MGDG: DGDG ratio in KO lines, which enhanced the endogenous JA levels and signaling. This imbalance of JA in KO plants led to changes in auxin levels, causing drastic root growth inhibition. These findings indicate the critical role of OsDGD1 in maintaining optimum levels of JA during Pi deficiency for conducive root growth. Besides acting as signaling molecules and structural components, our study widens the role of lipids as metabolic flux controllers for phytohormone biosynthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生长素积累诱导的愈伤组织形成被认为是离体植物再生的第一步。在拟南芥中,Aux/IAA蛋白的降解,IAA14,响应生长素信号,激活AUXIN反应因子7(ARF7)和ARF19以及一系列下游转录因子,在这个过程中也起着至关重要的作用。然而,生长素调节愈伤组织形成的具体机制尚不清楚。通过筛选单根1(iaa14/slr)拟南芥背景下的突变体库,我们获得了与愈伤组织形成相关的2(cfr2)突变体。cfr2突变体显示出较强的愈伤组织形成能力,以及侧根和不定根再生从叶片外植体比野生型(WT)幼苗,但没有恢复引力能力。cfr2中的生长素信号显著增强,一些下游转录因子的表达增加。基于地图的克隆,全基因组重测序,和表型互补实验表明,cfr2突变体中观察到的表型是由IAA14启动子区域的点突变引起的。这个突变,预测会破坏LBD16,LBD19和LBD30与IAA14启动子的结合,改变了IAA14在cfr2中的表达模式。一起来看,我们的结果在IAA14启动子区发现了一个新的突变,这影响IAA14的表达模式,进而影响其控制植物再生的能力。
    在线版本包含补充材料,可在10.1007/s12298-024-01493-y获得。
    Callus formation induced by auxin accumulation is considered the first step of in vitro plant regeneration. In Arabidopsis, degradation of the Aux/IAA protein, IAA14, in response to auxin signaling, which activates the AUXIN RESPONSE FACTOR 7 (ARF7) and ARF19 along with a series of downstream transcription factors, also plays a critical role in this process. However, the specific mechanism by which auxin regulates callus formation remains unclear. By screening mutant library in the solitary root 1 (iaa14/slr) Arabidopsis background we obtained the callus formation related 2 (cfr2) mutant. The cfr2 mutant exhibited a stronger capacity for callus formation, as well as lateral root and adventitious root regeneration from leaf explants than wild type (WT) seedlings, but did not recover gravitropism capability. The auxin signal in cfr2 was significantly enhanced, and the expression of some downstream transcription factors was increased. Map-based cloning, whole genome resequencing, and phenotypic complementation experiments showed that the phenotypes observed in the cfr2 mutant were caused by a point mutation in the IAA14 promoter region. This mutation, which is predicted to disrupt the binding of LBD16, LBD19, and LBD30 to the IAA14 promoter, changed the expression pattern of IAA14 in cfr2. Taken together, our results identified a new mutation in the IAA14 promoter region, which affects the expression pattern of IAA14 and in turn its ability to control plant regeneration.
    UNASSIGNED: The online version contains supplementary material available at 10.1007/s12298-024-01493-y.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过向农田施用不可持续的无机氮肥来加强未来的粮食安全可能会加剧环境破坏。氮素利用效率(NUE)与植物生长的协调性是,因此,对可持续农业至关重要。生长素在影响NUE的发育和信号反应中起关键作用。因此,对这些过程的更好理解为提高作物NUE提供了巨大的潜力。这篇综述总结了生长素对N相关和根系发育过程的影响,这些过程直接或间接影响模式植物拟南芥和主要作物物种的NUE,以强调通过调节生长素相关过程促进未来可持续农业发展的潜力。
    Strengthening future food security through the application of unsustainable levels of inorganic nitrogen (N) fertilizers to crop fields may exacerbate environmental damage. Coordination of N-use efficiency (NUE) and plant growth is, therefore, crucial for sustainable agriculture. Auxin plays pivotal roles in developmental and signaling responses that affect NUE. Hence, a better understanding of these processes provides great potential to improve crop NUE. This review summarizes the effects of auxin on N-related and root developmental processes that either directly or indirectly affect NUE in the model plant Arabidopsis and major crop species to highlight the potential of fostering sustainable agricultural development in the future through modulating auxin-related processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    小辅助RNA(SAURs),最大的早期生长素反应基因家族,在多个过程中起着至关重要的作用,包括细胞扩增,叶片生长和衰老,生长素运输,热带生长等等。虽然水稻SAUR基因家族在2006年就已被鉴定出来,但由于其分析方法的不完善,对水稻SAUR基因的鉴定十分必要。在这项研究中,在水稻(Oryzasativa)中,共有60个OsSAUR(包括两个假基因)分布在10条染色体上。生物信息学工具用于系统分析理化性质,亚细胞定位,主题组成,染色体位置,基因复制,进化关系,OsSAURs的生长素响应顺式元素。此外,基因芯片数据分析得到的表达谱显示,OsSAUR基因在不同组织中具有不同的表达模式,表明OsSAUR基因家族成员之间的功能差异。一句话,本研究为水稻SAUR基因家族提供了基础资料,为进一步研究SAUR在水稻生长发育中的作用奠定了基础。
    SMALL AUXIN UP RNAs (SAURs), the largest family of early auxin response genes, plays crucial roles in multiple processes, including cell expansion, leaf growth and senescence, auxin transport, tropic growth and so on. Although the rice SAUR gene family was identified in 2006, it is necessary to identify the rice SAUR gene due to the imperfection of its analysis methods. In this study, a total of 60 OsSAURs (including two pseudogenes) distributed on 10 chromosomes were identified in rice (Oryza sativa). Bioinformatics tools were used to systematically analyze the physicochemical properties, subcellular localization, motif compositions, chromosomal location, gene duplication, evolutionary relationships, auxin-responsive cis-elements of the OsSAURs. In addition, the expression profiles obtained from microarray data analysis showed that OsSAUR genes had different expression patterns in different tissues and responded to auxin treatment, indicating functional differences among members of OsSAUR gene family. In a word, this study provides basic information for SAUR gene family of rice and lays a foundation for further study on the role of SAUR in rice growth and development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:体细胞胚发生(SE)举例说明了植物细胞独特的发育可塑性。监管过程,包括控制细胞转录组胚胎重编程的表观遗传修饰,刚刚开始被揭露。
    结果:为了鉴定SE中组蛋白乙酰化调节表达的基因,我们分析了拟南芥外植体的整体转录组进行胚胎发生诱导,以响应组蛋白去乙酰化酶抑制剂的处理,曲古霉素A(TSA)。比较了TSA诱导的和生长素(2,4-二氯苯氧基乙酸;2,4-D)诱导的转录组。RNA-seq结果揭示了涉及广泛失调的TSA和生长素诱导的转录组反应的相似性,主要是镇压,大多数基因。在差异表达基因(DEGs)中,我们确定了SE的主调节因子(转录因子-TFs),参与生物合成的基因,信令,以及在吲哚-3-乙酸(IAA)生物合成中的生长素和NITRILS酶编码基因的极性运输。TSA上调的TF基因在生长素诱导的SE中具有重要功能,包括LEC1/LEC2,FUS3,AGL15,MYB118,PHB,PHV,PLTs,和WUS/WOX。TSA诱导的转录组也揭示了应激相关基因的广泛上调,包括与应激激素生物合成有关的那些。与转录组数据一致,TSA诱导的外植体积累水杨酸(SA)和脱落酸(ABA),提示组蛋白乙酰化(Hac)在SE诱导过程中调节应激激素相关反应中的作用。由于子叶外植体的正面大部分有助于SE诱导,我们还确定了对TSA治疗有反应的器官极性相关基因,包括AIL7/PLT7、RGE1、LBD18、40、HB32、CBF1和ULT2。相关突变体的分析支持极性相关基因在SE诱导中的作用。
    结论:研究结果为破译控制植物体细胞胚胎发生转变的表观遗传网络提供了一步。
    BACKGROUND: Somatic embryogenesis (SE) exemplifies the unique developmental plasticity of plant cells. The regulatory processes, including epigenetic modifications controlling embryogenic reprogramming of cell transcriptome, have just started to be revealed.
    RESULTS: To identify the genes of histone acetylation-regulated expression in SE, we analyzed global transcriptomes of Arabidopsis explants undergoing embryogenic induction in response to treatment with histone deacetylase inhibitor, trichostatin A (TSA). The TSA-induced and auxin (2,4-dichlorophenoxyacetic acid; 2,4-D)-induced transcriptomes were compared. RNA-seq results revealed the similarities of the TSA- and auxin-induced transcriptomic responses that involve extensive deregulation, mostly repression, of the majority of genes. Within the differentially expressed genes (DEGs), we identified the master regulators (transcription factors - TFs) of SE, genes involved in biosynthesis, signaling, and polar transport of auxin and NITRILASE-encoding genes of the function in indole-3-acetic acid (IAA) biosynthesis. TSA-upregulated TF genes of essential functions in auxin-induced SE, included LEC1/LEC2, FUS3, AGL15, MYB118, PHB, PHV, PLTs, and WUS/WOXs. The TSA-induced transcriptome revealed also extensive upregulation of stress-related genes, including those related to stress hormone biosynthesis. In line with transcriptomic data, TSA-induced explants accumulated salicylic acid (SA) and abscisic acid (ABA), suggesting the role of histone acetylation (Hac) in regulating stress hormone-related responses during SE induction. Since mostly the adaxial side of cotyledon explant contributes to SE induction, we also identified organ polarity-related genes responding to TSA treatment, including AIL7/PLT7, RGE1, LBD18, 40, HB32, CBF1, and ULT2. Analysis of the relevant mutants supported the role of polarity-related genes in SE induction.
    CONCLUSIONS: The study results provide a step forward in deciphering the epigenetic network controlling embryogenic transition in somatic cells of plants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号