Allosteric Regulation

变构调节
  • 文章类型: Journal Article
    含溴结构域蛋白9(BRD9)是染色质重塑和基因表达调控的关键角色,它与各种疾病的发展密切相关,包括癌症。最近的研究表明,BRD9的抑制可能在某些癌症的治疗中具有潜在的价值。分子动力学(MD)模拟,通过Markov建模和主成分分析研究变构抑制剂POJ和正构抑制剂82I与BRD9的结合机制及其变构调控。我们的结果表明,这两种类型的抑制剂的结合诱导蛋白质的显著结构变化,特别是在α-螺旋区域的形成和溶解中。马尔可夫通量分析显示,在抑制剂结合过程中,ZA环附近的α螺旋度发生了显着变化。结合自由能的计算表明,正构和变构抑制剂的合作会影响抑制剂与BRD9的结合能力,并改变正构和变构位置的活性位点。这项研究有望为82I和POJ对BRD9的抑制机制提供新的见解,并为开发靶向BRD9的癌症治疗策略提供理论基础。
    Bromodomain-containing protein 9 (BRD9) is a key player in chromatin remodeling and gene expression regulation, and it is closely associated with the development of various diseases, including cancers. Recent studies have indicated that inhibition of BRD9 may have potential value in the treatment of certain cancers. Molecular dynamics (MD) simulations, Markov modeling and principal component analysis were performed to investigate the binding mechanisms of allosteric inhibitor POJ and orthosteric inhibitor 82I to BRD9 and its allosteric regulation. Our results indicate that binding of these two types of inhibitors induces significant structural changes in the protein, particularly in the formation and dissolution of α-helical regions. Markov flux analysis reveals notable changes occurring in the α-helicity near the ZA loop during the inhibitor binding process. Calculations of binding free energies reveal that the cooperation of orthosteric and allosteric inhibitors affects binding ability of inhibitors to BRD9 and modifies the active sites of orthosteric and allosteric positions. This research is expected to provide new insights into the inhibitory mechanism of 82I and POJ on BRD9 and offers a theoretical foundation for development of cancer treatment strategies targeting BRD9.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    1961年JeffriesWyman到达罗马时,与EraldoAntonini合作研究血红蛋白和肌红蛋白是一次幸运的罢工。当变构控制的概念被构思并赋予生命科学界时,我发现自己与许多有创造力的科学家联系在一起。回想起来,这证明了我碰巧在身边的几位聪明的科学家的技能和想象力。这些人才展示了创造力的力量,正如座右铭“Mensagitatmolem”所描绘的那样;人文主义和智力的庆祝活动为蛋白质结构功能关系领域的新发现铺平了道路。我在此介绍了三十年来激动人心的科学生活中从我的记忆中出现的一些事件和人们。
    It was a Lucky Strike to be working with Eraldo Antonini on hemoglobin and myoglobin when Jeffries Wyman arrived in Rome in 1961. I found myself connected with a number of creative scientists when the concept of allosteric control was conceived and gifted to the life science community. In retrospect, this was a demonstration of the skill and imagination of a few intelligent scientists that I happened to be close to. Those talents demonstrated the power of creativity as pictured by the motto \"Mens agitat molem\"; a celebration of humanism and intellect that paved the way to novel discoveries in the field of structure function relationships in proteins. I have presented hereby some of the events and the people as emerged from my memory over three decades of exciting scientific life.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    内源性大麻素系统与奖励系统相互作用,以调节对自然增强剂的反应,以及滥用药物。先前的临床前研究表明,直接阻断CB1大麻素受体(CB1R)可以作为治疗物质使用障碍的潜在药理学方法。但是由于严重的精神病副作用,这种策略在临床试验中失败了。已经出现了替代策略以通过开发变构调节剂来规避直接CB1结合的副作用。我们假设CB1R信号的负变构调节会降低吗啡的增强特性并减少与阿片类药物滥用相关的行为。通过对小鼠进行静脉内自我给药,我们研究了GAT358,一种功能偏置的CB1R负变构调节剂(NAM),吗啡摄入量,类似复发的行为和为吗啡输注工作的动机。在吗啡自我给药的维持阶段,GAT358在固定比例1的强化方案下减少了吗啡输注的摄入量。GAT358还减少了强制禁欲后的吗啡寻求行为。此外,GAT358剂量依赖性地降低了在渐进的强化比例下获得吗啡输注的动机。引人注目的是,GAT358在相同的渐进比例任务中不影响为食物奖励而工作的动机,这表明GAT358在减少阿片类药物自我给药方面的作用是奖励特异性的。此外,GAT58在转杆试验中没有产生运动性共济失调。我们的结果表明,CB1RNAMs降低了吗啡的增强特性,并且可以代表安全减少阿片类药物滥用的可行治疗途径。
    The endocannabinoid system interacts with the reward system to modulate responsiveness to natural reinforcers, as well as drugs of abuse. Previous preclinical studies suggested that direct blockade of CB1 cannabinoid receptors (CB1R) could be leveraged as a potential pharmacological approach to treat substance use disorder, but this strategy failed during clinical trials due to severe psychiatric side effects. Alternative strategies have emerged to circumvent the side effects of direct CB1 binding through the development of allosteric modulators. We hypothesized that negative allosteric modulation of CB1R signalling would reduce the reinforcing properties of morphine and decrease behaviours associated with opioid misuse. By employing intravenous self-administration in mice, we studied the effects of GAT358, a functionally-biased CB1R negative allosteric modulator (NAM), on morphine intake, relapse-like behaviour and motivation to work for morphine infusions. GAT358 reduced morphine infusion intake during the maintenance phase of morphine self-administration under a fixed ratio 1 schedule of reinforcement. GAT358 also decreased morphine-seeking behaviour after forced abstinence. Moreover, GAT358 dose dependently decreased the motivation to obtain morphine infusions under a progressive ratio schedule of reinforcement. Strikingly, GAT358 did not affect the motivation to work for food rewards in an identical progressive ratio task, suggesting that the effect of GAT358 in decreasing opioid self-administration was reward specific. Furthermore, GAT58 did not produce motor ataxia in the rotarod test. Our results suggest that CB1R NAMs reduced the reinforcing properties of morphine and could represent a viable therapeutic route to safely decrease misuse of opioids.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    CFTR基因的功能缺失突变导致缩短寿命的遗传病囊性纤维化(CF),而CFTR的过度活跃可能导致分泌性腹泻和多囊肾疾病。虽然已经开发了针对CFTR蛋白的有效药物用于治疗CF,由超激活CFTR引起的疾病进展甚微。这里,我们解决了CFTR与CFTRinh-172(Inh-172)复合的低温EM结构,具有有希望的效力和功效的CFTR门控抑制剂。我们发现Inh-172结合在CFTR的孔内,通过主要的疏水相互作用和盐桥与跨膜片段(TM)1、6、8、9和12的氨基酸残基相互作用。这些残基的取代降低了Inh-172的表观亲和力。抑制剂结合的结构揭示了TM1、8和12的细胞外段的重新定向,支持涉及结合后构象变化的变构调节机制。这种变构抑制机制很容易解释我们的观察结果,猪CFTR,它保留了所有参与Inh-172结合的氨基酸残基,对Inh-172的敏感性大大降低,并且CF药物ivacaftor改变了Inh-172的表观亲和力(即,VX-770),通过与还包含TM8的位点结合来增强CFTR的活性。
    Loss-of-function mutations of the CFTR gene cause the life-shortening genetic disease cystic fibrosis (CF), whereas overactivity of CFTR may lead to secretory diarrhea and polycystic kidney disease. While effective drugs targeting the CFTR protein have been developed for the treatment of CF, little progress has been made for diseases caused by hyper-activated CFTR. Here, we solve the cryo-EM structure of CFTR in complex with CFTRinh-172 (Inh-172), a CFTR gating inhibitor with promising potency and efficacy. We find that Inh-172 binds inside the pore of CFTR, interacting with amino acid residues from transmembrane segments (TMs) 1, 6, 8, 9, and 12 through mostly hydrophobic interactions and a salt bridge. Substitution of these residues lowers the apparent affinity of Inh-172. The inhibitor-bound structure reveals re-orientations of the extracellular segment of TMs 1, 8, and 12, supporting an allosteric modulation mechanism involving post-binding conformational changes. This allosteric inhibitory mechanism readily explains our observations that pig CFTR, which preserves all the amino acid residues involved in Inh-172 binding, exhibits a much-reduced sensitivity to Inh-172 and that the apparent affinity of Inh-172 is altered by the CF drug ivacaftor (i.e., VX-770) which enhances CFTR\'s activity through binding to a site also comprising TM8.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肌苷5'-单磷酸脱氢酶(IMPDH)的变构调节,嘌呤代谢的重要酶,有助于腺嘌呤和鸟嘌呤核苷酸的稳态。然而,细菌中IMPDH调控的确切分子机制尚不清楚。使用生化和低温EM方法,我们揭示了分枝杆菌中IMPDH变构调节的复杂分子机制。该酶被GTP和(p)ppGpp抑制,绑定到监管CBS域,通过与铰链区的碱性残基相互作用,将催化核心域锁定在压缩构象中。这导致与活性位点结合的肌苷一磷酸(IMP)底物的闭塞,最终,抑制酶。GTP和(p)ppGpp变构效应子结合到它们的专用位点,但通过共同机制稳定压缩的八聚体。通过ATP对GTP或(p)ppGpp的竞争性置换来缓解抑制,从而允许IMP诱导的酶扩增。这里介绍的结构知识和机理理解为开发具有抗菌潜力的变构抑制剂开辟了新的可能性。
    Allosteric regulation of inosine 5\'-monophosphate dehydrogenase (IMPDH), an essential enzyme of purine metabolism, contributes to the homeostasis of adenine and guanine nucleotides. However, the precise molecular mechanism of IMPDH regulation in bacteria remains unclear. Using biochemical and cryo-EM approaches, we reveal the intricate molecular mechanism of the IMPDH allosteric regulation in mycobacteria. The enzyme is inhibited by both GTP and (p)ppGpp, which bind to the regulatory CBS domains and, via interactions with basic residues in hinge regions, lock the catalytic core domains in a compressed conformation. This results in occlusion of inosine monophosphate (IMP) substrate binding to the active site and, ultimately, inhibition of the enzyme. The GTP and (p)ppGpp allosteric effectors bind to their dedicated sites but stabilize the compressed octamer by a common mechanism. Inhibition is relieved by the competitive displacement of GTP or (p)ppGpp by ATP allowing IMP-induced enzyme expansion. The structural knowledge and mechanistic understanding presented here open up new possibilities for the development of allosteric inhibitors with antibacterial potential.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    变构调节是代谢调节的中心机制,但尚未针对肠道微生物群-宿主相互作用进行描述。苯乙酰谷氨酰胺(PAGln),肠道微生物来源的代谢产物,以前在临床上与心血管疾病(CVD)和心力衰竭(HF)相关。这里,使用表达β1-与β2-肾上腺素能受体(β1AR和β2AR)的细胞,PAGln被证明是β2AR的负变构调节剂(NAM),但不是β1AR。在功能研究中,PAGln进一步显示在分离的雄性小鼠心肌细胞和衰竭的人心脏左心室肌(收缩小梁)中促进NAM效应。最后,使用计算机对接研究以及定点诱变和功能分析,我们鉴定了β2AR上的位点(残基E122和V206),当突变时,其仍赋予对经典β2AR激动剂的反应性,但不再显示PAGln引发的NAM活性.本研究揭示了肠道微生物群特有的代谢物PAGln作为宿主GPCR的内源性NAM。
    Allosteric modulation is a central mechanism for metabolic regulation but has yet to be described for a gut microbiota-host interaction. Phenylacetylglutamine (PAGln), a gut microbiota-derived metabolite, has previously been clinically associated with and mechanistically linked to cardiovascular disease (CVD) and heart failure (HF). Here, using cells expressing β1- versus β2-adrenergic receptors (β1AR and β2AR), PAGln is shown to act as a negative allosteric modulator (NAM) of β2AR, but not β1AR. In functional studies, PAGln is further shown to promote NAM effects in both isolated male mouse cardiomyocytes and failing human heart left ventricle muscle (contracting trabeculae). Finally, using in silico docking studies coupled with site-directed mutagenesis and functional analyses, we identified sites on β2AR (residues E122 and V206) that when mutated still confer responsiveness to canonical β2AR agonists but no longer show PAGln-elicited NAM activity. The present studies reveal the gut microbiota-obligate metabolite PAGln as an endogenous NAM of a host GPCR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    代谢型谷氨酸受体(mGluRs)是神经调节家族CG蛋白偶联受体,其组装为二聚体,并将细胞外配体结合域(LBD)变构偶联至跨膜结构域(TMD)以驱动细胞内信号传导。药理学上,mGluR可以通过谷氨酸和合成的正构化合物靶向LBD或通过变构调节剂靶向TMD。尽管变构化合物具有作为治疗药物的潜力,对其作用的功能和结构基础的理解是有限的。在这里,我们使用多种方法来剖析正构与变构配体的功能和结构效应。我们发现,使用电生理和活细胞成像测定,激动剂和正变构调节剂(PAMs)都可以驱动II和III组mGluR的激活和内化。PAMs的作用是多效性的,增强对正构激动剂的最大反应,并独立充当mGluR亚型的内化偏向激动剂。受此和亚基间FRET分析的启发,我们在激动剂或拮抗剂单独或与PAM联合存在的情况下测定mGluR3的低温电子显微镜结构。这些结构揭示了PAM驱动的亚基内和亚基间构象的重塑,并为控制G蛋白和β-抑制蛋白偶联的滚动TMD二聚体界面激活途径提供了证据。
    The metabotropic glutamate receptors (mGluRs) are neuromodulatory family C G protein coupled receptors which assemble as dimers and allosterically couple extracellular ligand binding domains (LBDs) to transmembrane domains (TMDs) to drive intracellular signaling. Pharmacologically, mGluRs can be targeted at the LBDs by glutamate and synthetic orthosteric compounds or at the TMDs by allosteric modulators. Despite the potential of allosteric compounds as therapeutics, an understanding of the functional and structural basis of their effects is limited. Here we use multiple approaches to dissect the functional and structural effects of orthosteric versus allosteric ligands. We find, using electrophysiological and live cell imaging assays, that both agonists and positive allosteric modulators (PAMs) can drive activation and internalization of group II and III mGluRs. The effects of PAMs are pleiotropic, boosting the maximal response to orthosteric agonists and serving independently as internalization-biased agonists across mGluR subtypes. Motivated by this and intersubunit FRET analyses, we determine cryo-electron microscopy structures of mGluR3 in the presence of either an agonist or antagonist alone or in combination with a PAM. These structures reveal PAM-driven re-shaping of intra- and inter-subunit conformations and provide evidence for a rolling TMD dimer interface activation pathway that controls G protein and beta-arrestin coupling.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    控制脊椎动物血红蛋白(Hbs)的氧亲和力的主要作用是R和T形式之间的变构转换,分别具有相对较高和较低的氧亲和力。在颌骨脊椎动物中,鳄鱼具有Hb,在碳酸氢根离子的存在下,氧亲和力显着下降。通过消耗血液中几乎所有的氧气,它们可以长时间呆在水下,随着新陈代谢释放二氧化碳,其转化为碳酸氢根和氢离子由碳酸酐酶催化。尽管碳酸氢盐作为Hb的变构调节剂具有明显的普遍效用,这种特性只在鳄鱼身上进化。我们在这里报告了人和鳄鱼Hb在脱氧和配体状态下的分子结构,通过低温电子显微镜解决。我们揭示了仅在T状态下发现的两个碳酸氢根离子与鳄鱼蛋白之间在对称相关位点的精确相互作用。在这些位点附近没有其他已知的脊椎动物Hbs效应物结合。
    The principal effect controlling the oxygen affinity of vertebrate haemoglobins (Hbs) is the allosteric switch between R and T forms with relatively high and low oxygen affinity respectively. Uniquely among jawed vertebrates, crocodilians possess Hb that shows a profound drop in oxygen affinity in the presence of bicarbonate ions. This allows them to stay underwater for extended periods by consuming almost all the oxygen present in the blood-stream, as metabolism releases carbon dioxide, whose conversion to bicarbonate and hydrogen ions is catalysed by carbonic anhydrase. Despite the apparent universal utility of bicarbonate as an allosteric regulator of Hb, this property evolved only in crocodilians. We report here the molecular structures of both human and a crocodilian Hb in the deoxy and liganded states, solved by cryo-electron microscopy. We reveal the precise interactions between two bicarbonate ions and the crocodilian protein at symmetry-related sites found only in the T state. No other known effector of vertebrate Hbs binds anywhere near these sites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    合金,正如在现存的生物学中看到的,通过结合效应物后构象平衡的重新分布来控制酶的活性调节。在这里,一个最小的设计被证明,其中二肽可以利用动态亚胺键与简单的醛缩合,以获得球形聚集体作为催化活性状态,由于催化残基(咪唑)更接近,这有利于正交反应。最小催化剂的变构位点(胺)可以通过动态交换与抑制剂同时结合,这导致了自组装状态的能量景观的交替,导致催化活性下调。Further,通过反馈控制的自主反应网络实现对变构调节的时间控制,该网络利用(处于)活性状态的水解活性作为时间的函数。
    Allostery, as seen in extant biology, governs the activity regulation of enzymes through the redistribution of conformational equilibria upon binding an effector. Herein, a minimal design is demonstrated where a dipeptide can exploit dynamic imine linkage to condense with simple aldehydes to access spherical aggregates as catalytically active states, which facilitates an orthogonal reaction due to the closer proximity of catalytic residues (imidazoles). The allosteric site (amine) of the minimal catalyst can concomitantly bind to an inhibitor via a dynamic exchange, which leads to the alternation of the energy landscape of the self-assembled state, resulting in downregulation of catalytic activity. Further, temporal control over allosteric regulation is realized via a feedback-controlled autonomous reaction network that utilizes the hydrolytic activity of the (in)active state as a function of time.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    谷氨酸传递和离子型谷氨酸受体的激活是神经元控制其兴奋性和神经可塑性的基本手段。N-甲基-D-天冬氨酸受体(NMDAR)在所有配体门控通道中是独特的,需要两个配体-谷氨酸和甘氨酸-激活。这些受体作为异四聚体离子通道,通道开放依赖于甘氨酸和谷氨酸与GluN1和GluN2亚基的细胞外配体结合域(LBD)的同时结合,分别为2,3.两种配体对通道门控的确切分子机制尚不清楚,特别是没有代表开放通道和apo状态的结构。在这里,我们显示通道门打开需要连接LBD和跨膜结构域(TMD)的接头中的张力以及细胞外结构域相对于TMD的旋转。使用电子低温显微镜,我们捕获了GluN1-GluN2B(GluN1-2B)NMDAR的结构,其开放状态与正变构调节剂结合。此过程旋转并弯曲GluN1和GluN2B中的成孔螺旋,将TMD通道的对称性从伪四倍改变为两倍。处于apo和单配体状态的GluN1-2BNMDAR的结构表明,单独的甘氨酸或谷氨酸的结合导致不同的GluN1-2B二聚体排列,但LBD-TMD接头的张力不足以打开通道。该机制框架确定了通道门控的关键决定因素和调节NMDAR活性的潜在药理学策略。
    Glutamate transmission and activation of ionotropic glutamate receptors are the fundamental means by which neurons control their excitability and neuroplasticity1. The N-methyl-D-aspartate receptor (NMDAR) is unique among all ligand-gated channels, requiring two ligands-glutamate and glycine-for activation. These receptors function as heterotetrameric ion channels, with the channel opening dependent on the simultaneous binding of glycine and glutamate to the extracellular ligand-binding domains (LBDs) of the GluN1 and GluN2 subunits, respectively2,3. The exact molecular mechanism for channel gating by the two ligands has been unclear, particularly without structures representing the open channel and apo states. Here we show that the channel gate opening requires tension in the linker connecting the LBD and transmembrane domain (TMD) and rotation of the extracellular domain relative to the TMD. Using electron cryomicroscopy, we captured the structure of the GluN1-GluN2B (GluN1-2B) NMDAR in its open state bound to a positive allosteric modulator. This process rotates and bends the pore-forming helices in GluN1 and GluN2B, altering the symmetry of the TMD channel from pseudofourfold to twofold. Structures of GluN1-2B NMDAR in apo and single-liganded states showed that binding of either glycine or glutamate alone leads to distinct GluN1-2B dimer arrangements but insufficient tension in the LBD-TMD linker for channel opening. This mechanistic framework identifies a key determinant for channel gating and a potential pharmacological strategy for modulating NMDAR activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号