{Reference Type}: Journal Article {Title}: Ultrasensitive optical fiber SPR sensor enhanced by Au-NPs-film modified with functionalized CQDs for label-free detecting cobalt (II) ion. {Author}: Hou J;Xia B;Niu K;Wang J;Li J;Wang N; {Journal}: Anal Chim Acta {Volume}: 1320 {Issue}: 0 {Year}: 2024 Sep 1 {Factor}: 6.911 {DOI}: 10.1016/j.aca.2024.343030 {Abstract}: BACKGROUND: Cobalt, an essential trace element, is vital for maintaining human nervous system function, aiding in DNA synthesis, and contributing to red blood cell production. It is helpful for disease diagnosis and treatment plan evaluation by precisely monitoring its concentration changes in the human body. Despite extensive efforts made, due to its ultra-low concentration, the current limit of detection (LOD) as reported is still inadequate and cannot be satisfied with the precise clinical applications. Therefore, it is crucial to develop novel label-free sensors with high sensitivity and excellent selectivity for detecting trace amounts of Co2+.
RESULTS: Here, an ultrasensitive optical fiber SPR sensor was designed and fabricated for label-free detection of Co2+ with ultra-low concentration. It is achieved by modifying the carboxyl-functionalized CQDs on the AuNPs/Au film-coated hetero-core fiber, which can specifically capture the Co2+, leading to changes in the fiber's surface refractive index (RI) and subsequent SPR wavelength shifts in the transmission spectrum. Both the Au film and AuNPs on the fiber are modified with CQDs, leveraging their large surface area to enhance the number of active sites and probes. The sensor exhibits an ultra-high sensitivity of approximately 6.67 × 1019 nm/M, and the LOD is obtained as low as 5.36 × 10-20 M which is several orders of magnitude lower compared to other conventional methods. It is also experimentally demonstrated that the sensor possesses excellent specificity, stability, and repeatability, which may be adapted for detecting real clinical samples.
CONCLUSIONS: The CQDs-functionalized optical fiber SPR sensor exhibits substantial potential for precisely detecting Co2+ of trace amounts, which is especially vital for scarce clinical samples. Additionally, the sensing platform with sample sensor fabrication and measurement configuration introduces a novel, highly sensitive approach to biochemical analysis, particularly adapting for applications involving the detection of trace targets, which could also be employed to detect various biochemical targets by facile modification of CQDs with specific groups or biomolecules.