{Reference Type}: Journal Article {Title}: Distinguishing contributions of diverse sediment components to vanadium transport, immobilization and transformation in aquifer. {Author}: He J;Zhang B;Tan C;Tang Y;Shen Z;Wu S;Zhou S; {Journal}: Water Res {Volume}: 265 {Issue}: 0 {Year}: 2024 Nov 1 {Factor}: 13.4 {DOI}: 10.1016/j.watres.2024.122248 {Abstract}: Vanadium (V) occurs in environment naturally and anthropogenically, but little has been understood about its environmental behavior in groundwater aquifer with sediments. This study investigated the pentavalent V [V(V)] transport and transformation under the influence of different sediment components (minerals, organic matter, and microorganisms) through column experiments. All these components played pivotal roles in V immobilization. The synergistic effects of sediment components enhanced V retention compared to individual component. Mineral components, particularly those containing carbonates and metal oxides, predominantly influenced V(V) transport as indicated by XRD analysis. Organic matter, especially under low pH conditions, induced particle aggregation, thereby inhibiting the transport of V(V). The V K-edge X-ray absorption near-edge structure spectroscopy revealed the formation of tetravalent V[V(IV)] in treatments involving organic matter and microorganisms. Notably, organic matter exhibited the capability to directly reduce V(V). The introduction of microorganisms restricted V(V) transfer. V(V) reducing genera (e.g., Brevundimonas, Arenimonas, Xanthobacter) were detected, achieving V(V) reduction to insoluble V(IV). V(V) bioreduction was improved by minerals that promote microbial metabolism with enhanced electron transfer, or by organic matter that increases levels of intracellular nicotinamide adenine dinucleotide and extracellular polymeric substances. This study specifies the contributions of different sediment components to the transportation and transformation of V, deepening our understanding of V biogeochemistry in groundwater aquifer.