{Reference Type}: Journal Article {Title}: Functional co-delivery nanoliposomes based on improving hypoxia for increasing photoimmunotherapy efficacy of cold tumors. {Author}: Wang T;Chen S;Sun J;Li K; {Journal}: Int J Pharm {Volume}: 663 {Issue}: 0 {Year}: 2024 Sep 30 {Factor}: 6.51 {DOI}: 10.1016/j.ijpharm.2024.124581 {Abstract}: Cold tumors lack T cells infiltration and have low immunogenicity, resulting insufficient immunotherapy response. Therefore, how to realize the transformation from cold tumor to hot tumor is an urgent problem to be solved. Photodynamic therapy can induce immunogenic death of tumor cells (ICD) and activate T lymphocytes to produce tumor immune response. However, hypoxia in the cold tumor microenvironment limits the effectiveness of photodynamic therapy. So in this article, MET-HMME/CAT-HMME@Nlip as a functional co-delivery nanoliposomes was constructed based on overcoming the above problems. Firstly, the oxygen-deficient state could be improved by the following two ways, one is catalase loaded in CAT-HMME@Nlip can decompose high concentration hydrogen peroxide to produce oxygen, and the other is metformin loaded in MET-HMME@Nlip can decrease oxygen consumption by inhibiting of mitochondrial respiration. And then with the increase of substrate oxygen concentration, the sensitivity of photodynamic therapy can be greatly improved and the anti-tumor immune response by PDT-induced ICD can also be enhanced obviously. In addition, metformin could act as a small molecule immune checkpoint inhibitor to reduce the expression of PD-L1 on the surface of tumor cells, thereby effectively improving the specific killing ability of cytotoxic T cells to tumor cells which could not only erasing the primary tumor, but also inhibiting the growth of simulated distant tumors through the immune memory function. This study provides a new idea for improving the clinical treatment effect of hypoxic cold tumors, especially for tumors that could not benefit from immunotherapy due to low or no expression of PD-L1 protein on the surface of tumor cells.