{Reference Type}: Journal Article {Title}: Imbalance of early-life vitamin D intake targets ROS-mediated crosstalk between mitochondrial dysfunction and differentiation potential of MSCs associated the later obesity. {Author}: Li P;Wang Y;Liang Y;Jiang X;Tang T;Fan X;Wang R;Yang M;Liu Y;Qi K;Zhang Y; {Journal}: Stem Cell Res Ther {Volume}: 15 {Issue}: 1 {Year}: 2024 Aug 13 {Factor}: 8.079 {DOI}: 10.1186/s13287-024-03860-8 {Abstract}: BACKGROUND: Obesity is characterized by excessive fat accumulation, which is related with abnormal pluripotency of mesenchymal stem cells (MSCs). Recently, there is growing evidence that the disorder of maternal vitamin D (VD) intake is a well-known risk factor for long-term adverse health outcomes to their offspring. Otherwise, less is known of its repercussion and underlying mechanisms on the different differentiation potential of MSCs.
METHODS: Four-week-old female C57BL/6J mice were fed with different VD reproductive diets throughout the whole pregnancy and lactation. The characteristics of BMSCs from their seven-day male offspring, VDR knockdown establishment of HuMSCs and HuMSCs under the different VD interventions in vitro were confirmed by flow cytometry, RT-PCR, and immunofluorescence. The roles of VD on their mitochondrial dysfunction and differentiation potential were also investigated. Then their remaining weaned male pups were induced by administrating high-fat-diet (HFD) for 16 weeks and normal fat diet was simultaneously as controls. Their lipid accumulation and adipocytes hypertrophy were determined by histological staining and related gene expressions.
RESULTS: Herein, it was proved that imbalance of early-life VD intake could significantly aggravate the occurrence of obesity by inducing the adipogenesis through affecting the VD metabolism and related metabolites (P < 0.05). Moreover, abnormally maternal VD intake might be involved on the disorders of differentiation potential to inhibit the maintenance of MSCs stemness through increasing the productions of ROS, which was accompanied by impairing the expression of related genes on the adipo-osteogenic differentiation (P < 0.05). Moreover, it was along with increasing potential of adipogenic differentiation of MSCs as higher ROS in the state of VD deficiency, while excessive maternal VD status could conversely enhance the osteogenic differentiation with slightly lower ROS (P < 0.05). Furthermore, the underlying mechanisms might be involved on the mitochondria dysfunctional, especially the mitophagy, by activating the LC3b, P62 and etc. using in vivo and in vitro studies (P < 0.05).
CONCLUSIONS: These findings demonstrated that imbalance of early-life VD intake could target ROS-mediated crosstalk between mitochondrial dysfunction and differentiation potential of MSCs, which was significantly associated with the later obesity. Obviously, our results could open up an attractive modality for the benefits of suitable VD intake during the pregnancy and lactation.