{Reference Type}: Journal Article {Title}: Time-varying ambient air pollution exposure is associated with gut microbiome variation in the first 2 years of life. {Author}: Qiu T;Fang Q;Tian X;Cao Y;Fan X;Li Y;Tu Y;Liu L;Chen Z;Wei Y;Bai J;Huang J;Liu Y; {Journal}: Environ Pollut {Volume}: 360 {Issue}: 0 {Year}: 2024 Aug 10 {Factor}: 9.988 {DOI}: 10.1016/j.envpol.2024.124705 {Abstract}: The infant gut microbiome matures greatly in the first year of life. Ambient air pollution (AAP) exposure is associated with the infant gut microbiome. However, whether time-varying AAP influences infant gut microbiome variation is rarely investigated. This study aimed to investigate the effects of PM2.5, PM10, and O3 on infant gut microbiome variation longitudinally. Demographic information, stool samples, and AAP exposure concentrations were collected at 6, 12, 24 months from infants. Gut microbiome was processed and analyzed using 16S rRNA V3-V4 gene regions. AAP exposure concentrations were calculated using the China High Air Pollutants (CHAP) database. Multiple pollutant models were used to assess the mixed effects of PM2.5, PM10, and O3 on infant gut microbiome variation. Infants' gut microbiomes at 6, 12, 24 months old had significant differences in alpha diversity, beta diversity, and community composition. PM2.5 and O3 respectively explained 6.3% and 5.3% of the differences in community composition for 24-month-old infants. Single pollutant exposure and multiple pollutant exposure in different periods were both associated with alpha diversity indices and specific gut microbial phyla and genera. AAP was more associated with infant gut microbial alpha diversity indices, phyla variations, and genera variations at 12-24 months than 6-12 months. Multiple pollutant exposure in 0-2 lag months showed negative correlations with 12-24 months variation in Escherichia-Shigella (β = -0.854, 95%CI: 1.398 to -0.310) and Enterococcus (β = -0.979, 95%CI: 1.429 to -0.530). This study highlighted that time-varying PM2.5, PM10, and O3 synergistically influenced the variation of alpha diversity and abundance of gut microbial taxa in infants. Further research is needed to explore the effects and mechanisms of other environmental exposures on infant gut microbiome variation.