{Reference Type}: Journal Article {Title}: Gut-Brain Axis: Investigating the Effects of Gut Health on Cognitive Functioning in Adults. {Author}: Hameed M;Noor F;Hussain H;Khan RG;Khattak Haroon Ur Rashid S;Haroon Ur Rashid S;Atiq A;Ali H;Rida SE;Abbasi MA; {Journal}: Cureus {Volume}: 16 {Issue}: 7 {Year}: 2024 Jul 暂无{DOI}: 10.7759/cureus.64286 {Abstract}: BACKGROUND: The gut-brain axis is a bidirectional communication network linking the gastrointestinal tract and the central nervous system via neuronal, hormonal, and antibody signaling pathways. Central to this connection is gut health, encompassing the balance and functionality of gut microbiota, which significantly impacts on mental and cognitive health. This study investigates the association between gut health and cognitive functioning in adults, highlighting the mechanisms by which gut microbiota influence brain health.
OBJECTIVE: To examine the effects of gut health on adult cognitive performance, with a focus on the processes by which gut microbiota impacts brain health.
METHODS: A quantitative cross-sectional study was conducted in Islamabad from January 2024 to April 2024, involving 140 adult participants. Data were collected using a comprehensive 16-item gut health questionnaire and the cognition self-assessment rating scale (C-SARS). The psychometric properties of these scales were assessed, and the data were analyzed using Statistical Product and Service Solutions (SPSS, v26; IBM SPSS Statistics for Windows, Armonk, NY). Analytical and descriptive statistics, including regression, chi-square, independent sample t-tests, and mean and standard deviation, were applied.
RESULTS: The study found moderate associations between gut health and cognitive performance, particularly in memory and processing speed (R² = 0.17, β = -1.9, p = 0.12 for general cognition; R² = 0.01, β = -0.98, p = 0.02 for memory; R² = 0.03, β = -0.18, p = 0.03 for processing speed). Gender and marital status differences were significant, with males exhibiting better gut health scores than females (M = 34.1, SD = 3.2 vs. M = 31.2, SD = 3.2, p = 0.00), and singles showing better cognitive performance compared to married individuals (M = 9.4, SD = 5.4 vs. M = 6.5, SD = 3.7, p = 0.03).
CONCLUSIONS: The study highlights significant associations between gut health and cognitive functions, suggesting that gut microbiota composition can influence cognitive performance. Gender and marital status differences underscore the need to consider individual differences in gut-brain axis research. Future studies should replicate these findings in larger samples and explore gut microbiota-targeted interventions for cognitive health enhancement.