{Reference Type}: Journal Article {Title}: A prospective analysis of the correlation between ultrasonic B-lines, cardiac tissue doppler signals and left ventricular end-diastolic pressure in patients with severe aortic stenosis. {Author}: Bitar ZI;Maadarani O;Dashti H;Alenezi A;Almerri K; {Journal}: Echo Res Pract {Volume}: 11 {Issue}: 1 {Year}: 2024 Aug 12 暂无{DOI}: 10.1186/s44156-024-00055-y {Abstract}: BACKGROUND: The development of heart failure is a turning point in the natural course of aortic stenosis (AS). Pulmonary oedema and elevated left ventricular pressure (LVP) are cardinal features of heart failure. Evaluating pulmonary oedema by lung ultrasound involves taking the upper hand with a bedside noninvasive tool that may reflect LVP.
OBJECTIVE: We sought to assess the correlation between sonographic pulmonary congestion, invasive LV pre-A pressure, and echocardiographic LV end-diastolic pressure (LVEDP) in symptomatic AS patients receiving transcatheter aortic valve replacement.
METHODS: Forty-eight consecutive patients with severe AS and planned transcatheter aortic valve implantation (TAVI) were enrolled. LVEDP was estimated to be normal or elevated using the ASE/EACVI algorithm and transmitral Doppler indices, the E/A ratio, the E/e', and the left atrial volume index. Invasive LV pre-A pressure was used as a reference, with > 12 mm Hg defined as elevated.
RESULTS: Forty-eight patients (25 women (52%), mean age 75 years, standard deviation (SD) ± 7.7 years) were enrolled in the study. We detected severe B-lines (≥ 30) in 13 (27%) patients and moderate B-lines (15-30) in 33 (68.6%) patients. The number of B-lines increased significantly with the severity of New York Heart Association (NYHA) functional classes (Fig. 1). The B-line count was 14 ± 13 in NYHA class I patients, 20 ± 20 in class II patients, and 44 ± 35 in class III patients (p < 0.05, rho = 0.384). The number of B-lines was correlated with the E/E' ratio (R = 0.664, p < 0.0001) and the proBNP level (R = 0. 882, p < 0.008). We found no significant correlation with the LVEDP or LVEF. The LVEDP correlated well with the E/E' ratio (R = 0.491, p < 0.001) but not at all with E/A, DT, or LAVI. All patients had an elevated LVEDP > 12, with a mean pressure of 26 mmHg, a minimum of 13 mmHg, and a maximum of 45 mmHg, with an SD of 7.85.
CONCLUSIONS: Assessing lung ultrasonic B-lines is a straightforward and practical approach to identifying pulmonary oedema in AS patients. The number of B-lines correlated with the E/E' ratio and the functional status of patients but did not correlate with invasive LVEDP or LVEF. All patients had elevated LVEDP that correlated with E/E'.