{Reference Type}: Journal Article {Title}: Cortical morphological alterations in cognitively normal Parkinson's disease with severe hyposmia. {Author}: Li J;Xu Y;Liu X;Yang F;Fan W; {Journal}: Brain Res {Volume}: 1844 {Issue}: 0 {Year}: 2024 Dec 1 {Factor}: 3.61 {DOI}: 10.1016/j.brainres.2024.149150 {Abstract}: Olfactory dysfunction is a common non-motor symptom of Parkinson's disease(PD) and may hold valuable insights into the disease's underlying pathophysiology. This study aimed to investigate cortical morphometry alterations in PD patients with severe hyposmia(PD-SH) and mild hyposmia(PD-MH) using surface-based morphometry(SBM) methods. Participants included 36 PD-SH patients, 38 PD-MH patients, and 40 healthy controls(HCs). SBM analysis revealed distinct patterns of cortical alterations in PD-SH and PD-MH patients. PD-MH patients exhibited reduced cortical thickness in the right supramarginal gyrus, while PD-SH patients showed widespread cortical thinning in regions including the bilateral pericalcarine cortex, bilateral lingual gyrus, left inferior parietal cortex, left lateral occipital cortex, right pars triangularis, right cuneus, and right superior parietal cortex. Moreover, PD-SH patients displayed reduced cortical thickness in the right precuneus compared to PD-MH patients. Fractal dimension analysis indicated increased cortical complexity in PD-MH patients' right superior temporal cortex and right supramarginal gyrus, as well as decreased complexity in the bilateral postcentral cortex, left superior parietal cortex, and right precentral cortex. Similarly, cortical gyrification index and cortical sulcal depth exhibited heterogeneous patterns of changes in PD-SH and PD-MH patients compared to HCs. These findings underscore the multifaceted nature of olfactory impairment in PD, with distinct patterns of cortical morphometry alterations associated with different degrees of hyposmia. The observed discrepancies in brain regions showing alterations reflect the complexity of PD's pathophysiology. These insights contribute to a deeper understanding of olfactory dysfunction in PD and provide potential avenues for early diagnosis and targeted interventions.