{Reference Type}: Journal Article {Title}: Development, optimization and ex-vivo evaluation of a transdermal formulation containing trazodone. {Author}: Demurtas A;Nicoli S;Pescina S;Marchitto L;Ragni L;Russo V;Tommasi G;Santi P;Padula C; {Journal}: Eur J Pharm Sci {Volume}: 201 {Issue}: 0 {Year}: 2024 Oct 1 {Factor}: 5.112 {DOI}: 10.1016/j.ejps.2024.106874 {Abstract}: Trazodone is a triazolpyridine derivative approved for the treatment of depression, and currently marketed as oral formulations. The transdermal administration of this drug could reduce side effects, related to peak plasma concentration, and improve patient adherence due to a reduced administration frequency. The aims of this work were: (a) the evaluation of the effect of pH vehicle and permeation enhancers on trazodone permeability across porcine skin ex-vivo; (b) the development and optimization of a transdermal drug delivery system containing trazodone hydrochloride. From the results obtained, it was found that the effect of pH of the vehicle on the permeation of trazodone across the skin is quite complex, because it influences both solubility and partitioning and that the presence of fatty acids in the vehicle has a notable effect on permeation (the enhancement factor obtained was approx. 100). For both the fatty acid selected (oleic and lauric) a parabolic relationship between the transdermal flux and the concentration was found, with an optimum activity in the range 2-3 %. In the second part of the work, different patches were prepared and tested ex-vivo. Overall, the results obtained seem to highlight that drug loading, rather than the components of the adhesive matrix, plays the most relevant role for the permeation of trazodone. The addition of lauric acid, which produced a considerable enhancement in solution, was not effective when included in the patch. The obtained data are promising although probably not clinically relevant for the treatment of depression, but might be interesting for the treatment of insomnia and anxiety disorder, which require much lower doses.