{Reference Type}: Journal Article {Title}: Tea polyphenol nanoparticles enable targeted siRNA delivery and multi-bioactive therapy for abdominal aortic aneurysms. {Author}: Wu Z;Zhang P;Yue J;Wang Q;Zhuang P;Jehan S;Fan L;Xue J;Zhou W;Wang H; {Journal}: J Nanobiotechnology {Volume}: 22 {Issue}: 1 {Year}: 2024 Aug 8 {Factor}: 9.429 {DOI}: 10.1186/s12951-024-02756-2 {Abstract}: Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease, while there is a lack of pharmaceutical interventions to halt AAA progression presently. To address the multifaceted pathology of AAA, this work develops a novel multifunctional gene delivery system to simultaneously deliver two siRNAs targeting MMP-2 and MMP-9. The system (TPNs-siRNA), formed through the oxidative polymerization and self-assembly of epigallocatechin gallate (EGCG), efficiently encapsulates siRNAs during self-assembly. TPNs-siRNA safeguards siRNAs from biological degradation, facilitates intracellular siRNA transfection, promotes lysosomal escape, and releases siRNAs to silence MMP-2 and MMP-9. Additionally, TPNs, serving as a multi-bioactive material, mitigates oxidative stress and inflammation, fosters M1-to-M2 repolarization of macrophages, and inhibits cell calcification and apoptosis. In experiments with AAA mice, TPNs-siRNA accumulated and persisted in aneurysmal tissue after intravenous delivery, demonstrating that TPNs-siRNA can be significantly distributed in macrophages and VSMCs relevant to AAA pathogenesis. Leveraging the carrier's intrinsic multi-bioactive properties, the targeted siRNA delivery by TPNs exhibits a synergistic effect for enhanced AAA therapy. Furthermore, TPNs-siRNA is gradually metabolized and excreted from the body, resulting in excellent biocompatibility. Consequently, TPNs emerges as a promising multi-bioactive nanotherapy and a targeted delivery nanocarrier for effective AAA therapy.