{Reference Type}: Journal Article {Title}: Huanglian Jiedu Decoction enhances the stability of atherosclerotic plaques through SLC2A1-mediated efferocytosis. {Author}: Zhou G;Lin L;Wang S;Dong M;Lu K;Zhang Y;Lin Z;Lin J;Wu W;Peng R;Luo C; {Journal}: Int Immunopharmacol {Volume}: 140 {Issue}: 0 {Year}: 2024 Oct 25 {Factor}: 5.714 {DOI}: 10.1016/j.intimp.2024.112834 {Abstract}: BACKGROUND: Atherosclerotic (AS) plaques require a dense necrotic core and a robust fibrous cap to maintain stability. While previous studies have indicated that the traditional Chinese medicine Huang Lian Jie Du Decoction (HLJDD) possesses the capability to stabilize AS plaques, the underlying mechanisms remain obscure. This study aims to delve deeper into the potential mechanisms by which HLJDD improves AS through an integrated research strategy.
METHODS: Leveraging an AS model in ApoE-/- mice exposed to a high-fat diet (HFD), we scrutinized the therapeutic effects of HLJDD using microscopic observations, oil red O staining, HE staining and Masson staining. Employing comprehensive techniques of network pharmacology, bioinformatics, and molecular docking, we elucidated the mechanism by which HLJDD stabilizes AS plaques. In vitro experiments, utilizing ox-LDL-induced macrophages and apoptotic vascular smooth muscle cells (VSMCs), assessed the impact of HLJDD on efferocytosis and the role of SLC2A1.
RESULTS: In vivo experiments showcased the efficacy of HLJDD in reducing the quantity of aortic plaques, diminishing lipid deposition, and enhancing plaque stability in AS mice. Employing network pharmacology and machine learning, we pinpointed SLC2A1 as a crucial regulatory target. Molecular docking further validated the binding of HLJDD components with SLC2A1. The experiments demonstrated a dose-dependent upregulation in SLC2A1 expression by HLJDD, amplifying efferocytosis. Importantly, this effect was reversed by the SLC2A1 inhibitor STF-31, highlighting the pivotal role of SLC2A1 as a target.
CONCLUSIONS: The HLJDD can modulate macrophage efferocytosis by enhancing the expression levels of SLC2A1, thereby improving the stability of atherosclerotic plaques.