{Reference Type}: Journal Article {Title}: Early detection of dopaminergic dysfunction and glymphatic system impairment in Parkinson's disease. {Author}: Yao J;Huang T;Tian Y;Zhao H;Li R;Yin X;Shang S;Chen YC; {Journal}: Parkinsonism Relat Disord {Volume}: 127 {Issue}: 0 {Year}: 2024 Aug 2 {Factor}: 4.402 {DOI}: 10.1016/j.parkreldis.2024.107089 {Abstract}: OBJECTIVE: This study aimed to assess the glymphatic function and its correlation with clinical characteristics and the loss of dopaminergic neurons in Parkinson's disease (PD) using hybrid positron emission tomography (PET)-magnetic resonance imaging (MRI) combined with diffusion tensor image analysis along the perivascular space (DTI-ALPS), choroid plexus volume (CPV), and enlarged perivascular space (EPVS) volume.
METHODS: Twenty-five PD patients and thirty matched healthy controls (HC) participated in the study. All participants underwent 18F-fluorodopa (18F-DOPA) PET-MRI scanning. The striatal standardized uptake value ratio (SUVR), DTI-ALPS index, CPV, and EPVS volume were calculated. Furthermore, we also analysed the relationship between the DTI-ALPS index, CPV, EPVS volume and striatal SUVR as well as clinical characteristics of PD patients.
RESULTS: PD patients demonstrated significantly lower values in DTI-ALPS (t = 3.053, p = 0.004) and larger CPV (t = 2.743, p = 0.008) and EPVS volume (t = 2.807, p = 0.008) compared to HC. In PD group, the ALPS-index was negatively correlated with the Unified Parkinson's Disease Rating Scale III (UPDRS-III) scores (r = -0.730, p < 0.001), and positively correlated with the mean putaminal SUVR (r = 0.560, p = 0.007) and mean caudal SUVR (r = 0.459, p = 0.032). Moreover, the mean putaminal SUVR was negatively associated with the UPDRS-III scores (r = -0.544, p = 0.009).
CONCLUSIONS: DTI-ALPS has the potential to uncover glymphatic dysfunction in patients with PD, with this dysfunction correlating strongly with the severity of disease, together with the mean putaminal and caudal SUVR. PET- MRI can serve as a potential multimodal imaging biomarker for early-stage PD.