{Reference Type}: Journal Article {Title}: Hot topic: Mapping of the human intranasal mucosal thermal sensitivity: A clinical study on thermal threshold and trigeminal receptors. {Author}: Weise S;Hanslik P;Mignot C;Glushkov E;Bertsch A;Dubreuil R;Bensafi M;Fuessel S;Hummel T; {Journal}: PLoS One {Volume}: 19 {Issue}: 8 {Year}: 2024 {Factor}: 3.752 {DOI}: 10.1371/journal.pone.0304874 {Abstract}: BACKGROUND: The olfactory and trigeminal system are closely interlinked. Existing literature has primarily focused on characterizing trigeminal stimulation through mechanical and chemical stimulation, neglecting thermal stimulation thus far. The present study aimed to characterize the intranasal sensitivity to heat and the expression of trigeminal receptors (transient receptor potential channels, TRP).
METHODS: A total of 20 healthy participants (aged 21-27 years, 11 women) were screened for olfactory function and trigeminal sensitivity using several tests. Under endoscopic control, a thermal stimulator was placed in 7 intranasal locations: anterior septum, lateral vestibulum, interior nose tip, lower turbinate, middle septum, middle turbinate, and olfactory cleft to determine the thermal threshold. Nasal swabs were obtained in 3 different locations (anterior septum, middle turbinate, olfactory cleft) to analyze the expression of trigeminal receptors TRP: TRPV1, TRPV3, TRPA1, TRPM8.
RESULTS: The thermal threshold differed between locations (p = 0.018), with a trend for a higher threshold at the anterior septum (p = 0.092). There were no differences in quantitative receptor expression (p = 0.46) at the different sites. The highest overall receptor RNA expression was detected for TRPV1 over all sites (p<0.001). The expression of TRPV3 was highest at the anterior septum compared to the middle turbinate or the olfactory cleft. The thermal sensitivity correlated with olfactory sensitivity and results from tests were related to trigeminal function like intensity ratings of ammonium, a questionnaire regarding trigeminal function, nasal patency, and CO2 thresholds. However, no correlation was found between receptor expression and psychophysical measures of trigeminal function.
CONCLUSIONS: This study provided the first insights about intranasal thermal sensitivity and suggested the presence of topographical differences in thermal thresholds. There was no correlation between thermal sensitivity and trigeminal mRNA receptor expression. However, thermal sensitivity was found to be associated with psychophysical measures of trigeminal and olfactory function.