{Reference Type}: Journal Article {Title}: Physicochemical, structural and functional properties of pomelo peel pectin extracted by combination of pulsed electric field and cellulase hydrolysis. {Author}: Gao W;Liu J;Zhang P;Zeng XA;Han Z;Teng Y; {Journal}: Int J Biol Macromol {Volume}: 278 {Issue}: 0 {Year}: 2024 Aug 3 {Factor}: 8.025 {DOI}: 10.1016/j.ijbiomac.2024.134469 {Abstract}: In this study, pectin extracted from pomelo peel was investigated using three different combination methods of pulsed electric field (PEF) and cellulase. Three action sequences were performed, including PEF treatment followed by enzymatic hydrolysis, enzymatic hydrolysis followed by PEF treatment, and enzymatic hydrolysis simultaneously treated by PEF. The three corresponding pectins were namely PEP, EPP and SP. The physiochemical, molecular structural and functional properties of the three pectins were determined. The results showed that PEP had excellent physiochemical properties, with the highest yield (12.08 %), total sugar (80.17 %) and total phenol content (38.20 %). The monosaccharide composition and FT-IR analysis indicated that the three pectins were similar. The molecular weights of PEP, EPP and SP were 51.13, 88.51 and 40.00 kDa, respectively. PEP showed the best gel properties, emulsification stability and antioxidant capacity among the three products, due to its high galacturonic acid and total phenol content, appropriate protein and low molecular weight. The mechanism of PEF-assisted cellulase hydrolysis of pomelo peel was also revealed by SEM analysis. These results suggested that PEF pretreatment was the best method, which not only improved the efficiency of enzymatic extraction, but also reduced resource waste and increased financial benefits.