{Reference Type}: Journal Article {Title}: Size matters: Altering antigen specific immune tolerance by tuning size of particles. {Author}: Li B;Ma L;Li X;Suleman Z;Liu C;Piskareva O;Liu M; {Journal}: J Control Release {Volume}: 373 {Issue}: 0 {Year}: 2024 Sep 3 {Factor}: 11.467 {DOI}: 10.1016/j.jconrel.2024.07.077 {Abstract}: Precisely co-delivering antigens and immunosuppressants via nano/microcarriers to antigen-presenting cells (APCs) to induce antigen-specific immune tolerance represents a highly promising strategy for treating or preventing autoimmune diseases. The physicochemical properties of nano/microcarriers play a pivotal role in regulating immune function, with particle size and surface charge emerging as crucial parameters. In particular, very few studies have investigated micron-scale carriers of antigens. Herein, various nanoparticles and microparticles (NPs/MPs) with diverse particle sizes (ranging from 200 nm to 5 μm) and surface charges were prepared. Antigen peptides (MOG35-55) and immunosuppressants were encapsulated in these particles to induce antigen-specific immune tolerance. Two emulsifiers, PVA and PEMA, were employed to confer different surface charges to the NPs/MPs. The in vitro and in vivo studies demonstrated that NP/MP-PEMA could induce immune tolerance earlier than NP/MP-PVA and that NP/MP-PVA could induce immune tolerance more slowly and sustainably, indicating that highly negatively charged particles can induce immune tolerance more rapidly. Among the different sizes and charged particles tested, 200-nm-NP-PVA and 3-μm-MP-PEMA induced the greatest immune tolerance. In addition, the combination of NPs with MPs can further improve the induction of immune tolerance. In particular, combining 200 nm-NP-PVA with 3 μm-MP-PEMA or combining 500 nm-NP-PEMA with 3 μm-MP-PVA had optimal therapeutic efficacy. This study offers a new perspective for treating diseases by combining NPs with MPs and applying different emulsifiers to prepare NPs and MPs.